This implements the C-ABI convention as specified by:
https://github.com/WebAssembly/tool-conventions/blob/main/BasicCABI.md
While not an official specification, it's the ABI that is output by clang/LLVM.
As we use LLVM to compile compiler-rt, and want to integrate with C-libraries,
we follow the same convention when the calling convention results in 'C'.
For parameters and return types of functions with the C calling
convention, the LLVM backend now has a special lowering for the function
type that makes the function adhere to the C ABI. The AIR instruction
lowerings for call, ret, and ret_load are adjusted to bitcast the real
type to the ABI type if necessary.
More work on this will need to be done, however, this improvement is
enough that stage3 now passes all the same behavior tests that stage2
passes - notably, translate-c no longer has a segfault due to C ABI
issues with Zig's Clang C API wrapper.
Rather than allocating Decl objects with an Allocator, we instead allocate
them with a SegmentedList. This provides four advantages:
* Stable memory so that one thread can access a Decl object while another
thread allocates additional Decl objects from this list.
* It allows us to use u32 indexes to reference Decl objects rather than
pointers, saving memory in Type, Value, and dependency sets.
* Using integers to reference Decl objects rather than pointers makes
serialization trivial.
* It provides a unique integer to be used for anonymous symbol names,
avoiding multi-threaded contention on an atomic counter.
When the last instruction is a debug instruction, the type of it is void.
Similarly for 'noreturn' emit an 'unreachable' instruction to tell the wasm-validator
the path cannot be reached.
Also respect the '--strip' flag in the self-hosted wasm linker and not emit a 'name' section
when the flag is set to `true`.
* The `@bitCast` workaround is removed in favor of `@ptrCast` properly
doing element casting for slice element types. This required an
enhancement both to stage1 and stage2.
* stage1 incorrectly accepts `.{}` instead of `{}`. stage2 code that
abused this is fixed.
* Make some parameters comptime to support functions in switch
expressions (as opposed to making them function pointers).
* Avoid relying on local temporaries being mutable.
* Workarounds for when stage1 and stage2 disagree on function pointer
types.
* Workaround recursive formatting bug with a `@panic("TODO")`.
* Remove unreachable `else` prongs for some inferred error sets.
All in effort towards #89.
Sometimes we will want to generate debug info for a constant that
has been lowered to memory and not copied anywhere else. For this
we will need to defer resolution on PIE platforms until all locals
(including GOT entries) have been allocated.
Prior to this, Liveness encoded `asm`, `call`, and `aggregate_init` with
a single 32-bit integer, allowing up to 35 operands (3 are provided by
the regular tomb_bits). However, the Zig language allows function calls
with more than 35 arguments, inline assembly with more than 35 inputs,
and anonymous tuples with more than 35 elements.
The new encoding stores an index to the extra array instead of the bits
directly, and then as many extra elements as needed to encode all the
operands. The MSB is used as a flag to tell which element is the last
one, allowing for 31 bits per element.
Prior to this, print_air did not bother correctly printing tombstones
for these instructions; now it does.
In addition to updating the BigTomb iteration logic in the machine code
backends, this commit extracts the common logic into the Liveness namespace.
Rather than using blocks and control flow to check which operand is the maximum or minimum,
we use wasm's `select` instruction which returns us the operand based on a result from a comparison.
This saves us the need of control flow, as well as reduce the instruction count from 13 to 7.
Fixes#11353
The renderer treats comments and doc comments differently since doc
comments are parsed into the Ast. This commit adds a check after getting
the text for the doc comment and trims whitespace at the end before
rendering.
The `a = 0,` in the test is here to avoid a ParseError while parsing the
test.
Add support for emitting debug info for local variables within a subprogram.
This required moving bits responsible for populating the debug info back to
`CodeGen` from `Emit` as we require the operand to be resolved at callsite
plus we need to know its type. Without enforcing this, we could end up
with a `dead` mcv.