If the hw doesn't have support for exotic floating-point types such
as `f80`, we lower the call to a compiler-rt function call instead.
I've added a behavior test specifically targeting this use case which
now passes on `aarch64-macos`.
Additionally, this commit makes it possible to successfully build
stage3 on `aarch64-macos`. We can print the compiler's help message,
however, building with it needs a little bit more love still.
We can't yet run the behavior tests with stage3, but at least we can run
them with stage2, and we can use the proper test matrix.
This commit also adds use_llvm and ofmt to the zig build system.
* sret logic needed a check for hasRuntimeBits()
* lower f128 on windows targets with the "sse" class rather than
"memory". For reference, clang emits a compile error when __float128
is used with the MSVC ABI, saying that this type is not supported.
The docs for the x64 calling convention have both of these sentences:
- "Any argument that doesn't fit in 8 bytes, or isn't 1, 2, 4, or 8 bytes,
must be passed by reference."
- "All floating point operations are done using the 16 XMM registers."
* For i128, however, it is clear that the Windows calling convention
wants such an object to be passed by reference. I fixed the LLVM
lowering for function parameters to make this work.
So far it's supported by the LLVM backend only. I recommend for the
other backends to wait for the resolution of #10761 before adding
support for this feature.
Ideally on Windows, static libraries look like "foo.lib". However, CMake
and other build systems will unfortunately produce static libraries that
instead look like "libfoo.a". This patch makes Zig's CLI resolve "-lfoo"
arguments into static libraries that match this other pattern.
This patch fixes an issue with zig-bootstrap where it won't find the
LLVM, Clang, and LLD libraries.
These targets now have a similar disagreement with LLVM about the
alignment of 128-bit integers as x86_64:
* riscv64
* powerpc64
* powerpc64le
* mips64
* mips64el
* sparcv9
See #2987
For x86_64, LLVMABIAlignmentOfType(i128) reports 8. However I think 16
is a better number for two reasons:
1. Better machine code when loading into SIMD register.
2. The C ABI wants 16 for extern structs.
ZIR instructions updated: atomic_load, atomic_rmw, atomic_store, cmpxchg
These no longer construct a pointer type as the result location. This
solves a TODO that was preventing the pointer from possibly being
volatile, as well as properly handling allowzero and addrspace.
It also allows the pointer to be over-aligned, which may be needed
depending on the target. As a consequence, the element type needs to be
communicated in the ZIR. This is done by strategically making one of the
operands be ResultLoc.ty instead of ResultLoc.coerced_ty if possible, or
otherwise explicitly adding elem_type into the ZIR encoding, such as in
the case of atomic_load.
The pointer type of atomic operations is now checked in Sema by coercing
it to an expected pointer type, that maybe over-aligned according to
target requirements.
Together with the previous commit, Zig now has smaller alignment for
large integers, depending on the target, and yet still has type safety
for atomic operations that specially require higher alignment.