'Self' isn't a very good name to describe what it does.
This commit changes the type name into `CodeGen` and the parameter
to `func` as we're generating code for a function.
With this change, the backend's coding style is in line with the
self-hosted Wasm-linker.
When we return an operand directly as a result, we must call
`reuseOperand`. This commit ensures it's done for all currently-
implemented AIR instructions.
Rather than accepting a canonical branch and a target branch
we allow to directly merge a branch into the parent branch.
This is possible as there's no overlapping and we have infinite
registers to our availability. This makes merging a lot simpler.
When determining the type of a local (read: register), we would
previously subtract the stack locals also. However, this locals
are also within the same `locals` list, meaning the type of the
local we were retrieving was off by 2. This could create a validation
error when we re-use a local of a different type.
Upon a branch, we only allow locals to be freed which were allocated
within the same branch as where they die. This ensures that when two
or more branches target the same operand we do not try to free
it more than once. This does however not implement freeing the local
upon branch merging yet.
When reusing an operand it increases the reference count, then when
an operand dies it will only decrease the reference count. When
this reaches 0, the local will be virtually freed, meaning it can be
re-used for a new local.
By reference counting the locals, we can ensure that when we free
a local, no local will be reused while it still has references pointing
to it. This prevents misscompilations. The compiler will also panic if
we free a local more than we reference it, introducing extra safety to
ensure they match up.
This hooks reusal of locals into liveness analysis.
Meaning that when an operand dies, and is a local,
it will automatically be freed so it can be re-used
when a new local is required. The result of this, is
a lower allocation required for locals. Having less
locals means smaller binary size, as well as faster
compilation speed when loaded by the runtime.
Addends in relocations are signed integers as theoretically it could
be a negative number. As Atom's offsets are relative to their parent
section, the relocation value should still result in a postive number.
For this reason, the final result is stored as an unsigned integer.
Also, rather than using `null` for relocations that do not support
addends. We set the value to 0 for those that do not support addends,
and have to call `addendIsPresent` to determine if an addend exists
or not. This means each Relocation costs 4 bytes less than before,
saving memory while linking.