stage2 AArch64: move cmp to new allocRegs mechanism

Remove cmp from binOp in the process
This commit is contained in:
joachimschmidt557 2022-09-23 19:45:15 +02:00
parent 5838fe89c1
commit d8fddb535c
No known key found for this signature in database
GPG Key ID: E0B575BE2884ACC5

View File

@ -1265,6 +1265,376 @@ fn airSlice(self: *Self, inst: Air.Inst.Index) !void {
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
/// An argument to a Mir instruction which is read (and possibly also
/// written to) by the respective instruction
const ReadArg = struct {
ty: Type,
bind: Bind,
class: RegisterManager.RegisterBitSet,
reg: *Register,
const Bind = union(enum) {
inst: Air.Inst.Ref,
mcv: MCValue,
fn resolveToMcv(bind: Bind, function: *Self) InnerError!MCValue {
return switch (bind) {
.inst => |inst| try function.resolveInst(inst),
.mcv => |mcv| mcv,
};
}
fn resolveToImmediate(bind: Bind, function: *Self) InnerError!?u64 {
switch (bind) {
.inst => |inst| {
// TODO resolve independently of inst_table
const mcv = try function.resolveInst(inst);
switch (mcv) {
.immediate => |imm| return imm,
else => return null,
}
},
.mcv => |mcv| {
switch (mcv) {
.immediate => |imm| return imm,
else => return null,
}
},
}
}
};
};
/// An argument to a Mir instruction which is written to (but not read
/// from) by the respective instruction
const WriteArg = struct {
ty: Type,
bind: Bind,
class: RegisterManager.RegisterBitSet,
reg: *Register,
const Bind = union(enum) {
reg: Register,
none: void,
};
};
/// Holds all data necessary for enabling the potential reuse of
/// operand registers as destinations
const ReuseMetadata = struct {
corresponding_inst: Air.Inst.Index,
/// Maps every element index of read_args to the corresponding
/// index in the Air instruction
///
/// When the order of read_args corresponds exactly to the order
/// of the inputs of the Air instruction, this would be e.g.
/// &.{ 0, 1 }. However, when the order is not the same or some
/// inputs to the Air instruction are omitted (e.g. when they can
/// be represented as immediates to the Mir instruction),
/// operand_mapping should reflect that fact.
operand_mapping: []const Liveness.OperandInt,
};
/// Allocate a set of registers for use as arguments for a Mir
/// instruction
///
/// If the Mir instruction these registers are allocated for
/// corresponds exactly to a single Air instruction, populate
/// reuse_metadata in order to enable potential reuse of an operand as
/// the destination (provided that that operand dies in this
/// instruction).
///
/// Reusing an operand register as destination is the only time two
/// arguments may share the same register. In all other cases,
/// allocRegs guarantees that a register will never be allocated to
/// more than one argument.
///
/// Furthermore, allocReg guarantees that all arguments which are
/// already bound to registers before calling allocRegs will not
/// change their register binding. This is done by locking these
/// registers.
fn allocRegs(
self: *Self,
read_args: []const ReadArg,
write_args: []const WriteArg,
reuse_metadata: ?ReuseMetadata,
) InnerError!void {
// Air instructions have exactly one output
assert(!(reuse_metadata != null and write_args.len != 1)); // see note above
// The operand mapping is a 1:1 mapping of read args to their
// corresponding operand index in the Air instruction
assert(!(reuse_metadata != null and reuse_metadata.?.operand_mapping.len != read_args.len)); // see note above
const locks = try self.gpa.alloc(?RegisterLock, read_args.len + write_args.len);
defer self.gpa.free(locks);
const read_locks = locks[0..read_args.len];
const write_locks = locks[read_args.len..];
std.mem.set(?RegisterLock, locks, null);
defer for (locks) |lock| {
if (lock) |locked_reg| self.register_manager.unlockReg(locked_reg);
};
// When we reuse a read_arg as a destination, the corresponding
// MCValue of the read_arg will be set to .dead. In that case, we
// skip allocating this read_arg.
var reused_read_arg: ?usize = null;
// Lock all args which are already allocated to registers
for (read_args) |arg, i| {
const mcv = try arg.bind.resolveToMcv(self);
if (mcv == .register) {
read_locks[i] = self.register_manager.lockReg(mcv.register);
}
}
for (write_args) |arg, i| {
if (arg.bind == .reg) {
write_locks[i] = self.register_manager.lockReg(arg.bind.reg);
}
}
// Allocate registers for all args which aren't allocated to
// registers yet
for (read_args) |arg, i| {
const mcv = try arg.bind.resolveToMcv(self);
if (mcv == .register) {
arg.reg.* = mcv.register;
} else {
const track_inst: ?Air.Inst.Index = switch (arg.bind) {
.inst => |inst| Air.refToIndex(inst).?,
else => null,
};
const raw_reg = try self.register_manager.allocReg(track_inst, gp);
arg.reg.* = self.registerAlias(raw_reg, arg.ty);
read_locks[i] = self.register_manager.lockReg(arg.reg.*);
}
}
if (reuse_metadata != null) {
const inst = reuse_metadata.?.corresponding_inst;
const operand_mapping = reuse_metadata.?.operand_mapping;
const arg = write_args[0];
if (arg.bind == .reg) {
arg.reg.* = arg.bind.reg;
} else {
reuse_operand: for (read_args) |read_arg, i| {
if (read_arg.bind == .inst) {
const operand = read_arg.bind.inst;
const mcv = try self.resolveInst(operand);
if (mcv == .register and
std.meta.eql(arg.class, read_arg.class) and
self.reuseOperand(inst, operand, operand_mapping[i], mcv))
{
arg.reg.* = mcv.register;
write_locks[0] = null;
reused_read_arg = i;
break :reuse_operand;
}
}
} else {
const raw_reg = try self.register_manager.allocReg(inst, arg.class);
arg.reg.* = self.registerAlias(raw_reg, arg.ty);
write_locks[0] = self.register_manager.lockReg(arg.reg.*);
}
}
} else {
for (write_args) |arg, i| {
if (arg.bind == .reg) {
arg.reg.* = arg.bind.reg;
} else {
const raw_reg = try self.register_manager.allocReg(null, arg.class);
arg.reg.* = self.registerAlias(raw_reg, arg.ty);
write_locks[i] = self.register_manager.lockReg(arg.reg.*);
}
}
}
// For all read_args which need to be moved from non-register to
// register, perform the move
for (read_args) |arg, i| {
if (reused_read_arg) |j| {
// Check whether this read_arg was reused
if (i == j) continue;
}
const mcv = try arg.bind.resolveToMcv(self);
if (mcv != .register) {
if (arg.bind == .inst) {
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
const inst = Air.refToIndex(arg.bind.inst).?;
// Overwrite the MCValue associated with this inst
branch.inst_table.putAssumeCapacity(inst, .{ .register = arg.reg.* });
// If the previous MCValue occupied some space we track, we
// need to make sure it is marked as free now.
switch (mcv) {
.condition_flags => {
assert(self.condition_flags_inst.? == inst);
self.condition_flags_inst = null;
},
.register => |prev_reg| {
assert(!self.register_manager.isRegFree(prev_reg));
self.register_manager.freeReg(prev_reg);
},
else => {},
}
}
try self.genSetReg(arg.ty, arg.reg.*, mcv);
}
}
}
/// Wrapper around allocRegs and addInst tailored for specific Mir
/// instructions which are binary operations acting on two registers
///
/// Returns the destination register
fn binOpRegisterNew(
self: *Self,
mir_tag: Mir.Inst.Tag,
lhs_bind: ReadArg.Bind,
rhs_bind: ReadArg.Bind,
lhs_ty: Type,
rhs_ty: Type,
maybe_inst: ?Air.Inst.Index,
) !MCValue {
var lhs_reg: Register = undefined;
var rhs_reg: Register = undefined;
var dest_reg: Register = undefined;
const read_args = [_]ReadArg{
.{ .ty = lhs_ty, .bind = lhs_bind, .class = gp, .reg = &lhs_reg },
.{ .ty = rhs_ty, .bind = rhs_bind, .class = gp, .reg = &rhs_reg },
};
const write_args = [_]WriteArg{
.{ .ty = lhs_ty, .bind = .none, .class = gp, .reg = &dest_reg },
};
try self.allocRegs(
&read_args,
&write_args,
if (maybe_inst) |inst| .{
.corresponding_inst = inst,
.operand_mapping = &.{ 0, 1 },
} else null,
);
const mir_data: Mir.Inst.Data = switch (mir_tag) {
.add_shifted_register,
.adds_shifted_register,
.sub_shifted_register,
.subs_shifted_register,
=> .{ .rrr_imm6_shift = .{
.rd = dest_reg,
.rn = lhs_reg,
.rm = rhs_reg,
.imm6 = 0,
.shift = .lsl,
} },
.mul,
.lsl_register,
.asr_register,
.lsr_register,
.sdiv,
.udiv,
=> .{ .rrr = .{
.rd = dest_reg,
.rn = lhs_reg,
.rm = rhs_reg,
} },
.smull,
.umull,
=> .{ .rrr = .{
.rd = dest_reg.toX(),
.rn = lhs_reg,
.rm = rhs_reg,
} },
.and_shifted_register,
.orr_shifted_register,
.eor_shifted_register,
=> .{ .rrr_imm6_logical_shift = .{
.rd = dest_reg,
.rn = lhs_reg,
.rm = rhs_reg,
.imm6 = 0,
.shift = .lsl,
} },
else => unreachable,
};
_ = try self.addInst(.{
.tag = mir_tag,
.data = mir_data,
});
return MCValue{ .register = dest_reg };
}
/// Wrapper around allocRegs and addInst tailored for specific Mir
/// instructions which are binary operations acting on a register and
/// an immediate
///
/// Returns the destination register
fn binOpImmediateNew(
self: *Self,
mir_tag: Mir.Inst.Tag,
lhs_bind: ReadArg.Bind,
rhs_immediate: u32,
lhs_ty: Type,
lhs_and_rhs_swapped: bool,
maybe_inst: ?Air.Inst.Index,
) !MCValue {
var lhs_reg: Register = undefined;
var dest_reg: Register = undefined;
const read_args = [_]ReadArg{
.{ .ty = lhs_ty, .bind = lhs_bind, .class = gp, .reg = &lhs_reg },
};
const write_args = [_]WriteArg{
.{ .ty = lhs_ty, .bind = .none, .class = gp, .reg = &dest_reg },
};
const operand_mapping: []const Liveness.OperandInt = if (lhs_and_rhs_swapped) &.{1} else &.{0};
try self.allocRegs(
&read_args,
&write_args,
if (maybe_inst) |inst| .{
.corresponding_inst = inst,
.operand_mapping = operand_mapping,
} else null,
);
const mir_data: Mir.Inst.Data = switch (mir_tag) {
.add_immediate,
.adds_immediate,
.sub_immediate,
.subs_immediate,
=> .{ .rr_imm12_sh = .{
.rd = dest_reg,
.rn = lhs_reg,
.imm12 = @intCast(u12, rhs_immediate),
} },
.lsl_immediate,
.asr_immediate,
.lsr_immediate,
=> .{ .rr_shift = .{
.rd = dest_reg,
.rn = lhs_reg,
.shift = @intCast(u6, rhs_immediate),
} },
else => unreachable,
};
_ = try self.addInst(.{
.tag = mir_tag,
.data = mir_data,
});
return MCValue{ .register = dest_reg };
}
/// Don't call this function directly. Use binOp instead.
///
/// Calling this function signals an intention to generate a Mir
@ -1342,7 +1712,6 @@ fn binOpRegister(
defer if (new_rhs_lock) |reg| self.register_manager.unlockReg(reg);
const dest_reg = switch (mir_tag) {
.cmp_shifted_register => undefined, // cmp has no destination register
else => if (metadata) |md| blk: {
if (lhs_is_register and self.reuseOperand(md.inst, md.lhs, 0, lhs)) {
break :blk lhs_reg;
@ -1373,12 +1742,6 @@ fn binOpRegister(
.imm6 = 0,
.shift = .lsl,
} },
.cmp_shifted_register => .{ .rr_imm6_shift = .{
.rn = lhs_reg,
.rm = rhs_reg,
.imm6 = 0,
.shift = .lsl,
} },
.mul,
.lsl_register,
.asr_register,
@ -1469,7 +1832,6 @@ fn binOpImmediate(
defer if (new_lhs_lock) |reg| self.register_manager.unlockReg(reg);
const dest_reg = switch (mir_tag) {
.cmp_immediate => undefined, // cmp has no destination register
else => if (metadata) |md| blk: {
if (lhs_is_register and self.reuseOperand(
md.inst,
@ -1508,10 +1870,6 @@ fn binOpImmediate(
.rn = lhs_reg,
.shift = @intCast(u6, rhs.immediate),
} },
.cmp_immediate => .{ .r_imm12_sh = .{
.rn = lhs_reg,
.imm12 = @intCast(u12, rhs.immediate),
} },
else => unreachable,
};
@ -1554,7 +1912,6 @@ fn binOp(
switch (tag) {
.add,
.sub,
.cmp_eq,
=> {
switch (lhs_ty.zigTypeTag()) {
.Float => return self.fail("TODO binary operations on floats", .{}),
@ -1568,13 +1925,12 @@ fn binOp(
// operands
const lhs_immediate_ok = switch (tag) {
.add => lhs == .immediate and lhs.immediate <= std.math.maxInt(u12),
.sub, .cmp_eq => false,
.sub => false,
else => unreachable,
};
const rhs_immediate_ok = switch (tag) {
.add,
.sub,
.cmp_eq,
=> rhs == .immediate and rhs.immediate <= std.math.maxInt(u12),
else => unreachable,
};
@ -1582,13 +1938,11 @@ fn binOp(
const mir_tag_register: Mir.Inst.Tag = switch (tag) {
.add => .add_shifted_register,
.sub => .sub_shifted_register,
.cmp_eq => .cmp_shifted_register,
else => unreachable,
};
const mir_tag_immediate: Mir.Inst.Tag = switch (tag) {
.add => .add_immediate,
.sub => .sub_immediate,
.cmp_eq => .cmp_immediate,
else => unreachable,
};
@ -2052,7 +2406,15 @@ fn airOverflow(self: *Self, inst: Air.Inst.Index) !void {
try self.truncRegister(dest_reg, truncated_reg, int_info.signedness, int_info.bits);
// cmp dest, truncated
_ = try self.binOp(.cmp_eq, dest, .{ .register = truncated_reg }, lhs_ty, lhs_ty, null);
_ = try self.addInst(.{
.tag = .cmp_shifted_register,
.data = .{ .rr_imm6_shift = .{
.rn = dest_reg,
.rm = truncated_reg,
.imm6 = 0,
.shift = .lsl,
} },
});
try self.genSetStack(lhs_ty, stack_offset, .{ .register = truncated_reg });
try self.genSetStack(Type.initTag(.u1), stack_offset - overflow_bit_offset, .{ .condition_flags = .ne });
@ -2333,14 +2695,13 @@ fn airMulWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
} },
});
_ = try self.binOp(
.cmp_eq,
.{ .register = dest_high_reg },
.{ .immediate = 0 },
Type.usize,
Type.usize,
null,
);
_ = try self.addInst(.{
.tag = .cmp_immediate,
.data = .{ .r_imm12_sh = .{
.rn = dest_high_reg,
.imm12 = 0,
} },
});
if (int_info.bits < 64) {
// lsr dest_high, dest, #shift
@ -2353,14 +2714,13 @@ fn airMulWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
} },
});
_ = try self.binOp(
.cmp_eq,
.{ .register = dest_high_reg },
.{ .immediate = 0 },
Type.usize,
Type.usize,
null,
);
_ = try self.addInst(.{
.tag = .cmp_immediate,
.data = .{ .r_imm12_sh = .{
.rn = dest_high_reg,
.imm12 = 0,
} },
});
}
},
}
@ -2388,8 +2748,6 @@ fn airShlWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
if (self.liveness.isUnused(inst)) return self.finishAir(inst, .dead, .{ extra.lhs, extra.rhs, .none });
const result: MCValue = result: {
const lhs = try self.resolveInst(extra.lhs);
const rhs = try self.resolveInst(extra.rhs);
const lhs_ty = self.air.typeOf(extra.lhs);
const rhs_ty = self.air.typeOf(extra.rhs);
@ -2405,33 +2763,113 @@ fn airShlWithOverflow(self: *Self, inst: Air.Inst.Index) !void {
if (int_info.bits <= 64) {
const stack_offset = try self.allocMem(tuple_size, tuple_align, inst);
const lhs_lock: ?RegisterLock = if (lhs == .register)
self.register_manager.lockRegAssumeUnused(lhs.register)
else
null;
defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg);
try self.spillCompareFlagsIfOccupied();
self.condition_flags_inst = null;
// lsl dest, lhs, rhs
const dest = try self.binOp(.shl, lhs, rhs, lhs_ty, rhs_ty, null);
const dest_reg = dest.register;
const dest_reg_lock = self.register_manager.lockRegAssumeUnused(dest_reg);
defer self.register_manager.unlockReg(dest_reg_lock);
const lhs_bind: ReadArg.Bind = .{ .inst = extra.lhs };
const rhs_bind: ReadArg.Bind = .{ .inst = extra.rhs };
// asr/lsr reconstructed, dest, rhs
const reconstructed = try self.binOp(.shr, dest, rhs, lhs_ty, rhs_ty, null);
var lhs_reg: Register = undefined;
var rhs_reg: Register = undefined;
var dest_reg: Register = undefined;
var reconstructed_reg: Register = undefined;
const rhs_immediate = try rhs_bind.resolveToImmediate(self);
if (rhs_immediate) |imm| {
const read_args = [_]ReadArg{
.{ .ty = lhs_ty, .bind = lhs_bind, .class = gp, .reg = &lhs_reg },
};
const write_args = [_]WriteArg{
.{ .ty = lhs_ty, .bind = .none, .class = gp, .reg = &dest_reg },
.{ .ty = lhs_ty, .bind = .none, .class = gp, .reg = &reconstructed_reg },
};
try self.allocRegs(
&read_args,
&write_args,
null,
);
// lsl dest, lhs, rhs
_ = try self.addInst(.{
.tag = .lsl_immediate,
.data = .{ .rr_shift = .{
.rd = dest_reg,
.rn = lhs_reg,
.shift = @intCast(u6, imm),
} },
});
try self.truncRegister(dest_reg, dest_reg, int_info.signedness, int_info.bits);
// asr/lsr reconstructed, dest, rhs
_ = try self.addInst(.{
.tag = switch (int_info.signedness) {
.signed => Mir.Inst.Tag.asr_immediate,
.unsigned => Mir.Inst.Tag.lsr_immediate,
},
.data = .{ .rr_shift = .{
.rd = reconstructed_reg,
.rn = dest_reg,
.shift = @intCast(u6, imm),
} },
});
} else {
const read_args = [_]ReadArg{
.{ .ty = lhs_ty, .bind = lhs_bind, .class = gp, .reg = &lhs_reg },
.{ .ty = rhs_ty, .bind = rhs_bind, .class = gp, .reg = &rhs_reg },
};
const write_args = [_]WriteArg{
.{ .ty = lhs_ty, .bind = .none, .class = gp, .reg = &dest_reg },
.{ .ty = lhs_ty, .bind = .none, .class = gp, .reg = &reconstructed_reg },
};
try self.allocRegs(
&read_args,
&write_args,
null,
);
// lsl dest, lhs, rhs
_ = try self.addInst(.{
.tag = .lsl_register,
.data = .{ .rrr = .{
.rd = dest_reg,
.rn = lhs_reg,
.rm = rhs_reg,
} },
});
try self.truncRegister(dest_reg, dest_reg, int_info.signedness, int_info.bits);
// asr/lsr reconstructed, dest, rhs
_ = try self.addInst(.{
.tag = switch (int_info.signedness) {
.signed => Mir.Inst.Tag.asr_register,
.unsigned => Mir.Inst.Tag.lsr_register,
},
.data = .{ .rrr = .{
.rd = reconstructed_reg,
.rn = dest_reg,
.rm = rhs_reg,
} },
});
}
// cmp lhs, reconstructed
_ = try self.binOp(.cmp_eq, lhs, reconstructed, lhs_ty, lhs_ty, null);
_ = try self.addInst(.{
.tag = .cmp_shifted_register,
.data = .{ .rr_imm6_shift = .{
.rn = lhs_reg,
.rm = reconstructed_reg,
.imm6 = 0,
.shift = .lsl,
} },
});
try self.genSetStack(lhs_ty, stack_offset, dest);
try self.genSetStack(lhs_ty, stack_offset, .{ .register = dest_reg });
try self.genSetStack(Type.initTag(.u1), stack_offset - overflow_bit_offset, .{ .condition_flags = .ne });
break :result MCValue{ .stack_offset = stack_offset };
} else {
return self.fail("TODO overflow operations on integers > u64/i64", .{});
return self.fail("TODO ARM overflow operations on integers > u32/i32", .{});
}
},
else => unreachable,
@ -3634,56 +4072,102 @@ fn airRetLoad(self: *Self, inst: Air.Inst.Index) !void {
fn airCmp(self: *Self, inst: Air.Inst.Index, op: math.CompareOperator) !void {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: {
const lhs = try self.resolveInst(bin_op.lhs);
const rhs = try self.resolveInst(bin_op.rhs);
const lhs_ty = self.air.typeOf(bin_op.lhs);
const lhs_ty = self.air.typeOf(bin_op.lhs);
var int_buffer: Type.Payload.Bits = undefined;
const int_ty = switch (lhs_ty.zigTypeTag()) {
.Vector => return self.fail("TODO AArch64 cmp vectors", .{}),
.Enum => lhs_ty.intTagType(&int_buffer),
.Int => lhs_ty,
.Bool => Type.initTag(.u1),
.Pointer => Type.usize,
.ErrorSet => Type.initTag(.u16),
.Optional => blk: {
var opt_buffer: Type.Payload.ElemType = undefined;
const payload_ty = lhs_ty.optionalChild(&opt_buffer);
if (!payload_ty.hasRuntimeBitsIgnoreComptime()) {
break :blk Type.initTag(.u1);
} else if (lhs_ty.isPtrLikeOptional()) {
break :blk Type.usize;
} else {
return self.fail("TODO AArch64 cmp non-pointer optionals", .{});
}
},
.Float => return self.fail("TODO AArch64 cmp floats", .{}),
else => unreachable,
};
const int_info = int_ty.intInfo(self.target.*);
if (int_info.bits <= 64) {
_ = try self.binOp(.cmp_eq, lhs, rhs, int_ty, int_ty, BinOpMetadata{
.inst = inst,
.lhs = bin_op.lhs,
.rhs = bin_op.rhs,
});
try self.spillCompareFlagsIfOccupied();
self.condition_flags_inst = inst;
break :result switch (int_info.signedness) {
.signed => MCValue{ .condition_flags = Condition.fromCompareOperatorSigned(op) },
.unsigned => MCValue{ .condition_flags = Condition.fromCompareOperatorUnsigned(op) },
};
} else {
return self.fail("TODO AArch64 cmp for ints > 64 bits", .{});
}
const result: MCValue = if (self.liveness.isUnused(inst)) .dead else blk: {
break :blk try self.cmp(.{ .inst = bin_op.lhs }, .{ .inst = bin_op.rhs }, lhs_ty, op);
};
return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn cmp(
self: *Self,
lhs: ReadArg.Bind,
rhs: ReadArg.Bind,
lhs_ty: Type,
op: math.CompareOperator,
) !MCValue {
var int_buffer: Type.Payload.Bits = undefined;
const int_ty = switch (lhs_ty.zigTypeTag()) {
.Optional => blk: {
var opt_buffer: Type.Payload.ElemType = undefined;
const payload_ty = lhs_ty.optionalChild(&opt_buffer);
if (!payload_ty.hasRuntimeBitsIgnoreComptime()) {
break :blk Type.initTag(.u1);
} else if (lhs_ty.isPtrLikeOptional()) {
break :blk Type.usize;
} else {
return self.fail("TODO ARM cmp non-pointer optionals", .{});
}
},
.Float => return self.fail("TODO ARM cmp floats", .{}),
.Enum => lhs_ty.intTagType(&int_buffer),
.Int => lhs_ty,
.Bool => Type.initTag(.u1),
.Pointer => Type.usize,
.ErrorSet => Type.initTag(.u16),
else => unreachable,
};
const int_info = int_ty.intInfo(self.target.*);
if (int_info.bits <= 64) {
try self.spillCompareFlagsIfOccupied();
var lhs_reg: Register = undefined;
var rhs_reg: Register = undefined;
const rhs_immediate = try rhs.resolveToImmediate(self);
const rhs_immediate_ok = if (rhs_immediate) |imm| imm <= std.math.maxInt(u12) else false;
if (rhs_immediate_ok) {
const read_args = [_]ReadArg{
.{ .ty = int_ty, .bind = lhs, .class = gp, .reg = &lhs_reg },
};
try self.allocRegs(
&read_args,
&.{},
null, // we won't be able to reuse a register as there are no write_regs
);
_ = try self.addInst(.{
.tag = .cmp_immediate,
.data = .{ .r_imm12_sh = .{
.rn = lhs_reg,
.imm12 = @intCast(u12, rhs_immediate.?),
} },
});
} else {
const read_args = [_]ReadArg{
.{ .ty = int_ty, .bind = lhs, .class = gp, .reg = &lhs_reg },
.{ .ty = int_ty, .bind = rhs, .class = gp, .reg = &rhs_reg },
};
try self.allocRegs(
&read_args,
&.{},
null, // we won't be able to reuse a register as there are no write_regs
);
_ = try self.addInst(.{
.tag = .cmp_shifted_register,
.data = .{ .rr_imm6_shift = .{
.rn = lhs_reg,
.rm = rhs_reg,
.imm6 = 0,
.shift = .lsl,
} },
});
}
return switch (int_info.signedness) {
.signed => MCValue{ .condition_flags = Condition.fromCompareOperatorSigned(op) },
.unsigned => MCValue{ .condition_flags = Condition.fromCompareOperatorUnsigned(op) },
};
} else {
return self.fail("TODO AArch64 cmp for ints > 64 bits", .{});
}
}
fn airCmpVector(self: *Self, inst: Air.Inst.Index) !void {
_ = inst;
return self.fail("TODO implement airCmpVector for {}", .{self.target.cpu.arch});
@ -3926,15 +4410,13 @@ fn isNonNull(self: *Self, operand: MCValue) !MCValue {
fn isErr(self: *Self, ty: Type, operand: MCValue) !MCValue {
const error_type = ty.errorUnionSet();
const error_int_type = Type.initTag(.u16);
if (error_type.errorSetIsEmpty()) {
return MCValue{ .immediate = 0 }; // always false
}
const error_mcv = try self.errUnionErr(operand, ty);
_ = try self.binOp(.cmp_eq, error_mcv, .{ .immediate = 0 }, error_int_type, error_int_type, null);
return MCValue{ .condition_flags = .hi };
return try self.cmp(.{ .mcv = error_mcv }, .{ .mcv = .{ .immediate = 0 } }, error_type, .gt);
}
fn isNonErr(self: *Self, ty: Type, operand: MCValue) !MCValue {