Previously, if we were looking for the very last symbol by address in some
section, and the next symbol happened to also have the same address value
but would reside in a different section, we would keep going finding the
wrong symbol in the wrong section.
This mechanism turns out vital for correct linking of Go binaries
where the runtime looks for specially crafted synthetic symbols
which mark the beginning and end of each section. In this case,
we had an unfortunate clash between the end of PC marked machine code
section (`_runtime.etext`) and beginning of read-only data (`_runtime.rodata`).
In case the compiler outputted an object file that is not slicable
into subsections, entry point may overlap with a section atom which
is perfectly fine, so don't panic in that case.
If the shared library is a relative path, dirname will return null causing a segfault. In the case I debugged, the current directory was already in RPATH so just ignoring this case seems a reasonable fix. After this fix "make" and "make test" pass for mimalloc.
Closes#13766
This function is unused, and the current implementation contains a few footguns:
- The current wrapper treats all possible errors as unexpected, even likely ones like BUFFER_OVERFLOW (which is returned if the size of the out_buffer is too small to contain all the variable-length members of the requested info, which the user may not actually care about)
- Each caller may need to handle errors differently, different errors might be possible depending on the FILE_INFORMATION_CLASS, etc, and making a wrapper that handles all of those different use-cases nicely seems like it'd be more trouble than it's worth (FILE_INFORMATION_CLASS has 76 different possible values)
If a wrapper for NtQueryInformationFile is wanted, then it should probably have wrapper functions per-use-case, like how QueryObjectName wraps NtQueryObject for the `ObjectNameInformation` class
* use the same hash function as the rest of the steps
* fix race condition due to a macOS oddity.
* fix race condition due to file truncation (rename into place instead)
* integrate with marking Step.result_cached. check if the file already
exists with fs.access before doing anything else.
* use a directory so that the file basename can be "options.zig"
instead of a hash digest.
* better error reporting in case of file system failures.
Implements the __wasm_init_memory and __wasm_init_memory_flag synthetic
function and symbol.
The former will initialize all passive segments during runtime. For the
bss section we will fill it with zeroes, whereas the other segments
will simply be initialized only.
The latter stores the offset into the linear data section, after all
heap memory that is part of the Wasm module. Any memory initialized
at runtime starts from this offset.
This adds the atomic opcodes for the Threads proposal to the
WebAssembly specification: https://github.com/WebAssembly/threads
PrefixedOpcode has been renamed to MiscOpcode as there's multiple
types of prefixed opcodes. This naming is similar to other tools
such as LLVM. As we now use the 0xFE prefix, we moved the
function_index MIR instruction as it was occupying the same value.
This commit includes renaming all related opcodes.
Implements the TLS initialization function. This is a synthetic function
created by the linker. This will only be created when shared-memory is
enabled. This function will be called during thread creation, if there's
any TLS symbols, which will initialize the TLS segment using the
bulk-memory feature.
When linking with shared-memory enabled, we must ensure to emit
the "data count" section as well as emit the correct segment flags
to tell the runtime/loader that each segment is passive. This is
required as we don't emit the offsets for such segments but instead
initialize each segment (for each thread) during runtime.
Rather than adding the flags "on-demand" during limits writing,
we now properly parse them and store the flags within the limits
itself. This also allows us to store whether we're using shared-
memory or not. Only when the correct flag is set will we set the
max within `Limits` or else we will leave it `undefined`.
Linker now parses segments with regards to TLS segments. If the name
represents a TLS segment but does not contain the TLS flag, we set it
manually as the object file is created using an older compiler (LLVM).
For now we panic when we find a TLS relocation and implement those
later.
When a decl is `undefined` is must be stored in the data segment when
the build mode is safe. For unsafe optimize modes, it must be stored
in the bss segment instead.
For mutable decls where the atom contains all zeroes, it must always
be stored in the bss segment. All other values will result in the
atom being stored in the data segment.
--sysroot was copy-pasted instead of --maxrss from above. Also, make it less likely in other places for this to be repeated.
I found this by accident when reviewing f51413d2cf0bd87079dace7f6481d2a361a19ea6
It seems like the original code of setsockopt is not effective because
i catch the EINVAL branch when uncomment this code, it should call
setsockopt before the bind call.
This should fix issue #14900.
Co-authored-by: Qun He <hawkbee@qq.com>
This is useful for tests that want to `execve` zig directly. The string
is already null-terminated, so this will just expose it as such,
removing an extra allocation from the test.
Will be used in #14462
This is useful for creating byte buffers of actually-different-things.
Copied the argument order from `Allocator.alignedAlloc`
I noted that `ArrayListAligned` is going out of it's way to not set the
alignment at comptime when it is not specified. However, I was not able
to do that the same way here, and good people on IRC, @ifreund in
particular (thanks!) assured me that
[N]T align(@alignOf(T))
is equivalent to
[N]T
It doesn't matter if a pointer to a zero-bit (i.e. OPV) type is
undefined or runtime-known; we still know the result of the dereference
at comptime. Code may use this, for instance, when allocating zero-bit
types: `@as(*void, undefined)` is entirely reasonable to use at runtime,
since we know the pointer will never be accessed, thus it should be
valid at comptime too.