Eliding the namespace when a container type has no decls was an
experiment in saving memory, but it ended up causing more trouble than
it was worth in various places. So, take the small memory hit for
reified types, and just give every container type a namespace.
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.
After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
single unit of analysis is either a runtime function body, or a
`Decl`. It registers incremental dependencies, tracks analysis errors,
etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
and it may be lowered to a specific symbol by the codegen backend.
This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).
Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When #131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.
Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.
This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).
Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.
Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
During the LLVM 18 upgrade, two changes were made that changed `@alignOf(u64)` to 4 for the x86-windows target:
- `Type.maxIntAlignment` was made to return 16 for x86 (200e06b). Before that commit, `maxIntAlignment` was 8 for windows/uefi and 4 for everything else
- `Type.intAbiAlignment` was made to return 4 for 33...64 (7e1cba7 + e89d6fc). Before those commits, `intAbiAlignment` would return 8, since the maxIntAlignment for x86-windows was 8 (and for other targets, the `maxIntAlignment` of 4 would clamp the `intAbiAlignment` to 4)
`src/codegen/llvm.zig` has its own alignment calculations that no longer match the values returned from the `Type` functions. For the x86-windows target, this loop:
ddcb7b1c11/src/codegen/llvm.zig (L558-L567)
when the `size` is 64 will set `abi` and `pref` to 64 (meaning an align of 8 bytes), which doesn't match the `Type` alignment of 4.
This commit makes `Type.intAbiAlignment` match the alignment calculated in `codegen/llvm.zig`.
Fixes#20047Fixes#20466Fixes#20469
What is `sparcel`, you might ask? Good question!
If you take a peek in the SPARC v8 manual, §2.2, it is quite explicit that SPARC
v8 is a big-endian architecture. No little-endian or mixed-endian support to be
found here.
On the other hand, the SPARC v9 manual, in §3.2.1.2, states that it has support
for mixed-endian operation, with big-endian mode being the default.
Ok, so `sparcel` must just be referring to SPARC v9 running in little-endian
mode, surely?
Nope:
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L226)
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L104)
So, `sparcel` in LLVM is referring to some sort of fantastical little-endian
SPARC v8 architecture. I've scoured the internet and I can find absolutely no
evidence that such a thing exists or has ever existed. In fact, I can find no
evidence that a little-endian implementation of SPARC v9 ever existed, either.
Or any SPARC version, actually!
The support was added here: https://reviews.llvm.org/D8741
Notably, there is no mention whatsoever of what CPU this might be referring to,
and no justification given for the "but some are little" comment added in the
patch.
My best guess is that this might have been some private exercise in creating a
little-endian version of SPARC that never saw the light of day. Given that SPARC
v8 explicitly doesn't support little-endian operation (let alone little-endian
instruction encoding!), and no CPU is known to be implemented as such, I think
it's very reasonable for us to just remove this support.
This is a misfeature that we inherited from LLVM:
* https://reviews.llvm.org/D61259
* https://reviews.llvm.org/D61939
(`aarch64_32` and `arm64_32` are equivalent.)
I truly have no idea why this triple passed review in LLVM. It is, to date, the
*only* tag in the architecture component that is not, in fact, an architecture.
In reality, it is just an ILP32 ABI for AArch64 (*not* AArch32).
The triples that use `aarch64_32` look like `aarch64_32-apple-watchos`. Yes,
that triple is exactly what you think; it has no ABI component. They really,
seriously did this.
Since only Apple could come up with silliness like this, it should come as no
surprise that no one else uses `aarch64_32`. Later on, a GNU ILP32 ABI for
AArch64 was developed, and support was added to LLVM:
* https://reviews.llvm.org/D94143
* https://reviews.llvm.org/D104931
Here, sanity seems to have prevailed, and a triple using this ABI looks like
`aarch64-linux-gnu_ilp32` as you would expect.
As can be seen from the diffs in this commit, there was plenty of confusion
throughout the Zig codebase about what exactly `aarch64_32` was. So let's just
remove it. In its place, we'll use `aarch64-watchos-ilp32`,
`aarch64-linux-gnuilp32`, and so on. We'll then translate these appropriately
when talking to LLVM. Hence, this commit adds the `ilp32` ABI tag (we already
have `gnuilp32`).
This was added as an architecture to LLVM's target triple parser and the Clang
driver in 2015. No backend ever materialized as far as I can see (same for GCC).
In 2016, other code referring to it started using "Myriad" instead. Ultimately,
all code related to it that isn't in the target triple parser was removed. It
seems to be a real product, just... literally no one seems to know anything
about the ISA. I figure after almost a decade with no public ISA documentation
to speak of, and no LLVM backend to reference, it's probably safe to assume that
we're not going to learn much about this ISA, making it useless for Zig.
See: 1b5767f72b
See: 84a7564b28
See: 8cfe9d8f2a
This eliminates the statically-reachable recursion loop between code
generation backends and Sema. This is beneficial for optimizers
(although I do not measure any performance improvement for this change),
and for profilers.
This allows the mutate mutex to only be locked during actual grows,
which are rare. For the lists that didn't previously have a mutex, this
change has little effect since grows are rare and there is zero
contention on a mutex that is only ever locked by one thread. This
change allows `extra` to be mutated without racing with a grow.
The purpose of using path digest was to reference a file in a
serializable manner. Now that there is a stable index associated with
files, it is a superior way to accomplish that goal, since removes one
layer of indirection, and makes TrackedInst 8 bytes instead of 20.
The saved Zig Compiler State file for "hello world" goes from 1.3M to
1.2M with this change.
Primarily, this commit removes 2 fields from File, relying on the data
being stored in the `files` field, with the key as the path digest, and
the value as the struct decl corresponding to the File. This table is
serialized into the compiler state that survives between incremental
updates.
Meanwhile, the File struct remains ephemeral data that can be
reconstructed the first time it is needed by the compiler process, as
well as operated on by independent worker threads.
A key outcome of this commit is that there is now a stable index that
can be used to refer to a File. This will be needed when serializing
error messages to survive incremental compilation updates.
I'm so sorry.
This commit was just meant to be making all types fully resolve by
queueing resolution at the moment of their creation. Unfortunately, a
lot of dominoes ended up falling. Here's what happened:
* I added a work queue job to fully resolve a type.
* I realised that from here we could eliminate `Sema.types_to_resolve`
if we made function codegen a separate job. This is desirable for
simplicity of both spec and implementation.
* This led to a new AIR traversal to detect whether any required type is
unresolved. If a type in the AIR failed to resolve, then we can't run
codegen.
* Because full type resolution now occurs by the work queue job, a bug
was exposed whereby error messages for type resolution were associated
with the wrong `Decl`, resulting in duplicate error messages when the
type was also resolved "by" its owner `Decl` (which really *all*
resolution should be done on).
* A correct fix for this requires using a different `Sema` when
performing type resolution: we need a `Sema` owned by the type. Also
note that this fix is necessary for incremental compilation.
* This means a whole bunch of functions no longer need to take `Sema`s.
* First-order effects: `resolveTypeFields`, `resolveTypeLayout`, etc
* Second-order effects: `Type.abiAlignmentAdvanced`, `Value.orderAgainstZeroAdvanced`, etc
The end result of this is, in short, a more correct compiler and a
simpler language specification. This regressed a few error notes in the
test cases, but nothing that seems worth blocking this change.
Oh, also, I ripped out the old code in `test/src/Cases.zig` which
introduced a dependency on `Compilation`. This dependency was
problematic at best, and this code has been unused for a while. When we
re-enable incremental test cases, we must rewrite their executor to use
the compiler server protocol.