When Wasm extern functions contain the same name, but have a
different module name such as `extern "a"` vs `extern "b"` LLVM will
currently resolve the two functions to the same symbol. By mangling
the name of the symbol, we ensure the functions are resolved
seperately. We mangle the name by applying <name>|<module> where
module is also known as the library name.
Similar to what was done for EdDSA, allow incremental creation
and verification of ECDSA signatures.
Doing so for ECDSA is trivial, and can be useful for TLS as well
as the future package manager.
* Old cmake option: `-DZIG_SKIP_INSTALL_LIB_FILES=ON`
* New cmake option: `-DZIG_NO_LIB=ON`
* Old build.zig option: `-Dskip-install-lib-files`
* New build.zig option: `-Dno-lib`
Motivation is making build commands easier to type.
This definition communicates to libcxxabi that the libc will provide the
`__cxa_thread_atexit_impl` symbol. This is true for glibc but not
true for other libcs, such as musl.
This commit accepts unusual parameters like EcdsaP384Sha256.
Some certifictes(below certs are in /etc/ssl/certs/ca-certificates.crt on Ubuntu 22.04) use EcdsaP384Sha256 to sign itself.
- Subject: C=GR, L=Athens, O=Hellenic Academic and Research Institutions Cert. Authority, CN=Hellenic Academic and Research Institutions ECC RootCA 2015
- Subject: C=US, ST=Texas, L=Houston, O=SSL Corporation, CN=SSL.com EV Root Certification Authority ECC
- Subject: C=US, ST=Texas, L=Houston, O=SSL Corporation, CN=SSL.com Root Certification Authority ECC
In verify(), hash array `h` is allocated to be larger than the scalar.encoded_length.
The array is regarded as big-endian.
Hash values are filled in the back of the array and the rest bytes in front are filled with zero.
In sign(), the hash array is allocated and filled as same as verify().
In deterministicScalar(), hash bytes are insufficient to generate `k`
To generate `k` without narrowing its value range,
this commit uses algorithm stage h. in "Section 3.2 Generation of k" in RFC6979.
Considering all possible features are known by the linker during
compile-time, we can create arrays on the stack instead of
dynamically allocating hash maps. We use a simple bitset to determine
whether a feature is enabled or not, and from which object file
it originates. This allows us to make feature validation slightly
faster and use less runtime memory.
In the future this could be enhanced further by having a single
array instead with a more sophisticated bitset.
The list of features a Wasm object/binary file can emit can differ
from the list of cpu features. The reason for this is because the
"target_features" section also contains linker features. An example
of this is the "shared-mem" feature, which is a feature for the linker
and not that of the cpu target as defined by LLVM.
Adds a test for inferring features based on a different object file.
Also provides a test case where cpu features are explicitly set on
a library where the end result will output said target features.