Revamp the ed25519 API (#13309)

This commit is contained in:
Frank Denis 2022-10-27 19:07:42 +02:00 committed by GitHub
parent 710e2e7f10
commit 9c0d975a09
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 403 additions and 201 deletions

View File

@ -16,27 +16,227 @@ const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;
/// Ed25519 (EdDSA) signatures.
pub const Ed25519 = struct {
/// The underlying elliptic curve.
pub const Curve = @import("edwards25519.zig").Edwards25519;
/// Length (in bytes) of a seed required to create a key pair.
pub const seed_length = 32;
/// Length (in bytes) of a compressed secret key.
pub const secret_length = 64;
/// Length (in bytes) of a compressed public key.
pub const public_length = 32;
/// Length (in bytes) of a signature.
pub const signature_length = 64;
pub const Curve = std.crypto.ecc.Edwards25519;
/// Length (in bytes) of optional random bytes, for non-deterministic signatures.
pub const noise_length = 32;
const CompressedScalar = Curve.scalar.CompressedScalar;
const Scalar = Curve.scalar.Scalar;
/// An Ed25519 secret key.
pub const SecretKey = struct {
/// Length (in bytes) of a raw secret key.
pub const encoded_length = 64;
bytes: [encoded_length]u8,
/// Return the seed used to generate this secret key.
pub fn seed(self: SecretKey) [KeyPair.seed_length]u8 {
return self.bytes[0..KeyPair.seed_length].*;
}
/// Return the raw public key bytes corresponding to this secret key.
pub fn publicKeyBytes(self: SecretKey) [PublicKey.encoded_length]u8 {
return self.bytes[KeyPair.seed_length..].*;
}
/// Create a secret key from raw bytes.
pub fn fromBytes(bytes: [encoded_length]u8) !SecretKey {
return SecretKey{ .bytes = bytes };
}
/// Return the secret key as raw bytes.
pub fn toBytes(sk: SecretKey) [encoded_length]u8 {
return sk.bytes;
}
// Return the clamped secret scalar and prefix for this secret key
fn scalarAndPrefix(self: SecretKey) struct { scalar: CompressedScalar, prefix: [32]u8 } {
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(&self.seed());
h.final(&az);
var s = az[0..32].*;
Curve.scalar.clamp(&s);
return .{ .scalar = s, .prefix = az[32..].* };
}
};
/// A Signer is used to incrementally compute a signature.
/// It can be obtained from a `KeyPair`, using the `signer()` function.
pub const Signer = struct {
h: Sha512,
scalar: CompressedScalar,
nonce: CompressedScalar,
r_bytes: [Curve.encoded_length]u8,
fn init(scalar: CompressedScalar, nonce: CompressedScalar, public_key: PublicKey) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signer {
const r = try Curve.basePoint.mul(nonce);
const r_bytes = r.toBytes();
var t: [64]u8 = undefined;
mem.copy(u8, t[0..32], &r_bytes);
mem.copy(u8, t[32..], &public_key.bytes);
var h = Sha512.init(.{});
h.update(&t);
return Signer{ .h = h, .scalar = scalar, .nonce = nonce, .r_bytes = r_bytes };
}
/// Add new data to the message being signed.
pub fn update(self: *Signer, data: []const u8) void {
self.h.update(data);
}
/// Compute a signature over the entire message.
pub fn finalize(self: *Signer) Signature {
var hram64: [Sha512.digest_length]u8 = undefined;
self.h.final(&hram64);
const hram = Curve.scalar.reduce64(hram64);
const s = Curve.scalar.mulAdd(hram, self.scalar, self.nonce);
return Signature{ .r = self.r_bytes, .s = s };
}
};
/// An Ed25519 public key.
pub const PublicKey = struct {
/// Length (in bytes) of a raw public key.
pub const encoded_length = 32;
bytes: [encoded_length]u8,
/// Create a public key from raw bytes.
pub fn fromBytes(bytes: [encoded_length]u8) NonCanonicalError!PublicKey {
try Curve.rejectNonCanonical(bytes);
return PublicKey{ .bytes = bytes };
}
/// Convert a public key to raw bytes.
pub fn toBytes(pk: PublicKey) [encoded_length]u8 {
return pk.bytes;
}
fn signWithNonce(public_key: PublicKey, msg: []const u8, scalar: CompressedScalar, nonce: CompressedScalar) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature {
var st = try Signer.init(scalar, nonce, public_key);
st.update(msg);
return st.finalize();
}
fn computeNonceAndSign(public_key: PublicKey, msg: []const u8, noise: ?[noise_length]u8, scalar: CompressedScalar, prefix: []const u8) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature {
var h = Sha512.init(.{});
if (noise) |*z| {
h.update(z);
}
h.update(prefix);
h.update(msg);
var nonce64: [64]u8 = undefined;
h.final(&nonce64);
const nonce = Curve.scalar.reduce64(nonce64);
return public_key.signWithNonce(msg, scalar, nonce);
}
};
/// A Verifier is used to incrementally verify a signature.
/// It can be obtained from a `Signature`, using the `verifier()` function.
pub const Verifier = struct {
h: Sha512,
s: CompressedScalar,
a: Curve,
expected_r: Curve,
fn init(sig: Signature, public_key: PublicKey) (NonCanonicalError || EncodingError || IdentityElementError)!Verifier {
const r = sig.r;
const s = sig.s;
try Curve.scalar.rejectNonCanonical(s);
const a = try Curve.fromBytes(public_key.bytes);
try a.rejectIdentity();
try Curve.rejectNonCanonical(r);
const expected_r = try Curve.fromBytes(r);
try expected_r.rejectIdentity();
var h = Sha512.init(.{});
h.update(&r);
h.update(&public_key.bytes);
return Verifier{ .h = h, .s = s, .a = a, .expected_r = expected_r };
}
/// Add new content to the message to be verified.
pub fn update(self: *Verifier, msg: []const u8) void {
self.h.update(msg);
}
/// Verify that the signature is valid for the entire message.
pub fn verify(self: *Verifier) (SignatureVerificationError || WeakPublicKeyError || IdentityElementError)!void {
var hram64: [Sha512.digest_length]u8 = undefined;
self.h.final(&hram64);
const hram = Curve.scalar.reduce64(hram64);
const sb_ah = try Curve.basePoint.mulDoubleBasePublic(self.s, self.a.neg(), hram);
if (self.expected_r.sub(sb_ah).clearCofactor().rejectIdentity()) |_| {
return error.SignatureVerificationFailed;
} else |_| {}
}
};
/// An Ed25519 signature.
pub const Signature = struct {
/// Length (in bytes) of a raw signature.
pub const encoded_length = Curve.encoded_length + @sizeOf(CompressedScalar);
/// The R component of an EdDSA signature.
r: [Curve.encoded_length]u8,
/// The S component of an EdDSA signature.
s: CompressedScalar,
/// Return the raw signature (r, s) in little-endian format.
pub fn toBytes(self: Signature) [encoded_length]u8 {
var bytes: [encoded_length]u8 = undefined;
mem.copy(u8, bytes[0 .. encoded_length / 2], &self.r);
mem.copy(u8, bytes[encoded_length / 2 ..], &self.s);
return bytes;
}
/// Create a signature from a raw encoding of (r, s).
/// EdDSA always assumes little-endian.
pub fn fromBytes(bytes: [encoded_length]u8) Signature {
return Signature{
.r = bytes[0 .. encoded_length / 2].*,
.s = bytes[encoded_length / 2 ..].*,
};
}
/// Create a Verifier for incremental verification of a signature.
pub fn verifier(self: Signature, public_key: PublicKey) (NonCanonicalError || EncodingError || IdentityElementError)!Verifier {
return Verifier.init(self, public_key);
}
/// Verify the signature against a message and public key.
/// Return IdentityElement or NonCanonical if the public key or signature are not in the expected range,
/// or SignatureVerificationError if the signature is invalid for the given message and key.
pub fn verify(self: Signature, msg: []const u8, public_key: PublicKey) (IdentityElementError || NonCanonicalError || SignatureVerificationError || EncodingError || WeakPublicKeyError)!void {
var st = try Verifier.init(self, public_key);
st.update(msg);
return st.verify();
}
};
/// An Ed25519 key pair.
pub const KeyPair = struct {
/// Length (in bytes) of a seed required to create a key pair.
pub const seed_length = noise_length;
/// Public part.
public_key: [public_length]u8,
/// Secret part. What we expose as a secret key is, under the hood, the concatenation of the seed and the public key.
secret_key: [secret_length]u8,
public_key: PublicKey,
/// Secret scalar.
secret_key: SecretKey,
/// Derive a key pair from an optional secret seed.
///
@ -56,120 +256,101 @@ pub const Ed25519 = struct {
var h = Sha512.init(.{});
h.update(&ss);
h.final(&az);
const p = Curve.basePoint.clampedMul(az[0..32].*) catch return error.IdentityElement;
var sk: [secret_length]u8 = undefined;
mem.copy(u8, &sk, &ss);
const pk = p.toBytes();
mem.copy(u8, sk[seed_length..], &pk);
return KeyPair{ .public_key = pk, .secret_key = sk };
const pk_p = Curve.basePoint.clampedMul(az[0..32].*) catch return error.IdentityElement;
const pk_bytes = pk_p.toBytes();
var sk_bytes: [SecretKey.encoded_length]u8 = undefined;
mem.copy(u8, &sk_bytes, &ss);
mem.copy(u8, sk_bytes[seed_length..], &pk_bytes);
return KeyPair{
.public_key = PublicKey.fromBytes(pk_bytes) catch unreachable,
.secret_key = try SecretKey.fromBytes(sk_bytes),
};
}
/// Create a KeyPair from a secret key.
pub fn fromSecretKey(secret_key: [secret_length]u8) KeyPair {
pub fn fromSecretKey(secret_key: SecretKey) IdentityElementError!KeyPair {
const pk_p = try Curve.fromBytes(secret_key.publicKeyBytes());
// It is critical for EdDSA to use the correct public key.
// In order to enforce this, a SecretKey implicitly includes a copy of the public key.
// In Debug mode, we can still afford checking that the public key is correct for extra safety.
if (std.builtin.mode == .Debug) {
const recomputed_kp = try create(secret_key[0..seed_length].*);
debug.assert(recomputed_kp.public_key.p.toBytes() == pk_p.toBytes());
}
return KeyPair{
.public_key = PublicKey{ .p = pk_p },
.secret_key = secret_key,
.public_key = secret_key[seed_length..].*,
};
}
/// Sign a message using the key pair.
/// The noise can be null in order to create deterministic signatures.
/// If deterministic signatures are not required, the noise should be randomly generated instead.
/// This helps defend against fault attacks.
pub fn sign(key_pair: KeyPair, msg: []const u8, noise: ?[noise_length]u8) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature {
if (!mem.eql(u8, &key_pair.secret_key.publicKeyBytes(), &key_pair.public_key.toBytes())) {
return error.KeyMismatch;
}
const scalar_and_prefix = key_pair.secret_key.scalarAndPrefix();
return key_pair.public_key.computeNonceAndSign(
msg,
noise,
scalar_and_prefix.scalar,
&scalar_and_prefix.prefix,
);
}
/// Create a Signer, that can be used for incremental signing.
/// Note that the signature is not deterministic.
/// The noise parameter, if set, should be something unique for each message,
/// such as a random nonce, or a counter.
pub fn signer(key_pair: KeyPair, noise: ?[noise_length]u8) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signer {
if (!mem.eql(u8, &key_pair.secret_key.publicKeyBytes(), &key_pair.public_key.toBytes())) {
return error.KeyMismatch;
}
const scalar_and_prefix = key_pair.secret_key.scalarAndPrefix();
var h = Sha512.init(.{});
h.update(&scalar_and_prefix.prefix);
var noise2: [noise_length]u8 = undefined;
crypto.random.bytes(&noise2);
if (noise) |*z| {
h.update(z);
}
var nonce64: [64]u8 = undefined;
h.final(&nonce64);
const nonce = Curve.scalar.reduce64(nonce64);
return Signer.init(scalar_and_prefix.scalar, nonce, key_pair.public_key);
}
};
/// Sign a message using a key pair, and optional random noise.
/// Having noise creates non-standard, non-deterministic signatures,
/// but has been proven to increase resilience against fault attacks.
pub fn sign(msg: []const u8, key_pair: KeyPair, noise: ?[noise_length]u8) (IdentityElementError || WeakPublicKeyError || KeyMismatchError)![signature_length]u8 {
const seed = key_pair.secret_key[0..seed_length];
const public_key = key_pair.secret_key[seed_length..];
if (!mem.eql(u8, public_key, &key_pair.public_key)) {
return error.KeyMismatch;
}
var az: [Sha512.digest_length]u8 = undefined;
var h = Sha512.init(.{});
h.update(seed);
h.final(&az);
h = Sha512.init(.{});
if (noise) |*z| {
h.update(z);
}
h.update(az[32..]);
h.update(msg);
var nonce64: [64]u8 = undefined;
h.final(&nonce64);
const nonce = Curve.scalar.reduce64(nonce64);
const r = try Curve.basePoint.mul(nonce);
var sig: [signature_length]u8 = undefined;
mem.copy(u8, sig[0..32], &r.toBytes());
mem.copy(u8, sig[32..], public_key);
h = Sha512.init(.{});
h.update(&sig);
h.update(msg);
var hram64: [Sha512.digest_length]u8 = undefined;
h.final(&hram64);
const hram = Curve.scalar.reduce64(hram64);
var x = az[0..32];
Curve.scalar.clamp(x);
const s = Curve.scalar.mulAdd(hram, x.*, nonce);
mem.copy(u8, sig[32..], s[0..]);
return sig;
}
/// Verify an Ed25519 signature given a message and a public key.
/// Returns error.SignatureVerificationFailed is the signature verification failed.
pub fn verify(sig: [signature_length]u8, msg: []const u8, public_key: [public_length]u8) (SignatureVerificationError || WeakPublicKeyError || EncodingError || NonCanonicalError || IdentityElementError)!void {
const r = sig[0..32];
const s = sig[32..64];
try Curve.scalar.rejectNonCanonical(s.*);
try Curve.rejectNonCanonical(public_key);
const a = try Curve.fromBytes(public_key);
try a.rejectIdentity();
try Curve.rejectNonCanonical(r.*);
const expected_r = try Curve.fromBytes(r.*);
try expected_r.rejectIdentity();
var h = Sha512.init(.{});
h.update(r);
h.update(&public_key);
h.update(msg);
var hram64: [Sha512.digest_length]u8 = undefined;
h.final(&hram64);
const hram = Curve.scalar.reduce64(hram64);
const sb_ah = try Curve.basePoint.mulDoubleBasePublic(s.*, a.neg(), hram);
if (expected_r.sub(sb_ah).clearCofactor().rejectIdentity()) |_| {
return error.SignatureVerificationFailed;
} else |_| {}
}
/// A (signature, message, public_key) tuple for batch verification
pub const BatchElement = struct {
sig: [signature_length]u8,
sig: Signature,
msg: []const u8,
public_key: [public_length]u8,
public_key: PublicKey,
};
/// Verify several signatures in a single operation, much faster than verifying signatures one-by-one
pub fn verifyBatch(comptime count: usize, signature_batch: [count]BatchElement) (SignatureVerificationError || IdentityElementError || WeakPublicKeyError || EncodingError || NonCanonicalError)!void {
var r_batch: [count][32]u8 = undefined;
var s_batch: [count][32]u8 = undefined;
var r_batch: [count]CompressedScalar = undefined;
var s_batch: [count]CompressedScalar = undefined;
var a_batch: [count]Curve = undefined;
var expected_r_batch: [count]Curve = undefined;
for (signature_batch) |signature, i| {
const r = signature.sig[0..32];
const s = signature.sig[32..64];
try Curve.scalar.rejectNonCanonical(s.*);
try Curve.rejectNonCanonical(signature.public_key);
const a = try Curve.fromBytes(signature.public_key);
const r = signature.sig.r;
const s = signature.sig.s;
try Curve.scalar.rejectNonCanonical(s);
const a = try Curve.fromBytes(signature.public_key.bytes);
try a.rejectIdentity();
try Curve.rejectNonCanonical(r.*);
const expected_r = try Curve.fromBytes(r.*);
try Curve.rejectNonCanonical(r);
const expected_r = try Curve.fromBytes(r);
try expected_r.rejectIdentity();
expected_r_batch[i] = expected_r;
r_batch[i] = r.*;
s_batch[i] = s.*;
r_batch[i] = r;
s_batch[i] = s;
a_batch[i] = a;
}
@ -177,7 +358,7 @@ pub const Ed25519 = struct {
for (signature_batch) |signature, i| {
var h = Sha512.init(.{});
h.update(&r_batch[i]);
h.update(&signature.public_key);
h.update(&signature.public_key.bytes);
h.update(signature.msg);
var hram64: [Sha512.digest_length]u8 = undefined;
h.final(&hram64);
@ -212,7 +393,7 @@ pub const Ed25519 = struct {
}
/// Ed25519 signatures with key blinding.
pub const BlindKeySignatures = struct {
pub const key_blinding = struct {
/// Length (in bytes) of a blinding seed.
pub const blind_seed_length = 32;
@ -220,81 +401,69 @@ pub const Ed25519 = struct {
pub const BlindSecretKey = struct {
prefix: [64]u8,
blind_scalar: CompressedScalar,
blind_public_key: CompressedScalar,
blind_public_key: BlindPublicKey,
};
/// A blind public key.
pub const BlindPublicKey = struct {
/// Public key equivalent, that can used for signature verification.
key: PublicKey,
/// Recover a public key from a blind version of it.
pub fn unblind(blind_public_key: BlindPublicKey, blind_seed: [blind_seed_length]u8, ctx: []const u8) (IdentityElementError || NonCanonicalError || EncodingError || WeakPublicKeyError)!PublicKey {
const blind_h = blindCtx(blind_seed, ctx);
const inv_blind_factor = Scalar.fromBytes(blind_h[0..32].*).invert().toBytes();
const pk_p = try (try Curve.fromBytes(blind_public_key.key.bytes)).mul(inv_blind_factor);
return PublicKey.fromBytes(pk_p.toBytes());
}
};
/// A blind key pair.
pub const BlindKeyPair = struct {
blind_public_key: [public_length]u8,
blind_public_key: BlindPublicKey,
blind_secret_key: BlindSecretKey,
};
/// Blind an existing key pair with a blinding seed and a context.
pub fn blind(key_pair: Ed25519.KeyPair, blind_seed: [blind_seed_length]u8, ctx: []const u8) !BlindKeyPair {
var h: [Sha512.digest_length]u8 = undefined;
Sha512.hash(key_pair.secret_key[0..32], &h, .{});
Curve.scalar.clamp(h[0..32]);
const scalar = Curve.scalar.reduce(h[0..32].*);
/// Create an blind key pair from an existing key pair, a blinding seed and a context.
pub fn init(key_pair: Ed25519.KeyPair, blind_seed: [blind_seed_length]u8, ctx: []const u8) (NonCanonicalError || IdentityElementError)!BlindKeyPair {
var h: [Sha512.digest_length]u8 = undefined;
Sha512.hash(&key_pair.secret_key.seed(), &h, .{});
Curve.scalar.clamp(h[0..32]);
const scalar = Curve.scalar.reduce(h[0..32].*);
const blind_h = blindCtx(blind_seed, ctx);
const blind_factor = Curve.scalar.reduce(blind_h[0..32].*);
const blind_h = blindCtx(blind_seed, ctx);
const blind_factor = Curve.scalar.reduce(blind_h[0..32].*);
const blind_scalar = Curve.scalar.mul(scalar, blind_factor);
const blind_public_key = (Curve.basePoint.mul(blind_scalar) catch return error.IdentityElement).toBytes();
const blind_scalar = Curve.scalar.mul(scalar, blind_factor);
const blind_public_key = BlindPublicKey{
.key = try PublicKey.fromBytes((Curve.basePoint.mul(blind_scalar) catch return error.IdentityElement).toBytes()),
};
var prefix: [64]u8 = undefined;
mem.copy(u8, prefix[0..32], h[32..64]);
mem.copy(u8, prefix[32..64], blind_h[32..64]);
var prefix: [64]u8 = undefined;
mem.copy(u8, prefix[0..32], h[32..64]);
mem.copy(u8, prefix[32..64], blind_h[32..64]);
const blind_secret_key = .{
.prefix = prefix,
.blind_scalar = blind_scalar,
.blind_public_key = blind_public_key,
};
return BlindKeyPair{
.blind_public_key = blind_public_key,
.blind_secret_key = blind_secret_key,
};
}
/// Recover a public key from a blind version of it.
pub fn unblindPublicKey(blind_public_key: [public_length]u8, blind_seed: [blind_seed_length]u8, ctx: []const u8) ![public_length]u8 {
const blind_h = blindCtx(blind_seed, ctx);
const inv_blind_factor = Scalar.fromBytes(blind_h[0..32].*).invert().toBytes();
const public_key = try (try Curve.fromBytes(blind_public_key)).mul(inv_blind_factor);
return public_key.toBytes();
}
/// Sign a message using a blind key pair, and optional random noise.
/// Having noise creates non-standard, non-deterministic signatures,
/// but has been proven to increase resilience against fault attacks.
pub fn sign(msg: []const u8, key_pair: BlindKeyPair, noise: ?[noise_length]u8) ![signature_length]u8 {
var h = Sha512.init(.{});
if (noise) |*z| {
h.update(z);
const blind_secret_key = BlindSecretKey{
.prefix = prefix,
.blind_scalar = blind_scalar,
.blind_public_key = blind_public_key,
};
return BlindKeyPair{
.blind_public_key = blind_public_key,
.blind_secret_key = blind_secret_key,
};
}
h.update(&key_pair.blind_secret_key.prefix);
h.update(msg);
var nonce64: [64]u8 = undefined;
h.final(&nonce64);
const nonce = Curve.scalar.reduce64(nonce64);
const r = try Curve.basePoint.mul(nonce);
/// Sign a message using a blind key pair, and optional random noise.
/// Having noise creates non-standard, non-deterministic signatures,
/// but has been proven to increase resilience against fault attacks.
pub fn sign(key_pair: BlindKeyPair, msg: []const u8, noise: ?[noise_length]u8) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signature {
const scalar = key_pair.blind_secret_key.blind_scalar;
const prefix = key_pair.blind_secret_key.prefix;
var sig: [signature_length]u8 = undefined;
mem.copy(u8, sig[0..32], &r.toBytes());
mem.copy(u8, sig[32..], &key_pair.blind_public_key);
h = Sha512.init(.{});
h.update(&sig);
h.update(msg);
var hram64: [Sha512.digest_length]u8 = undefined;
h.final(&hram64);
const hram = Curve.scalar.reduce64(hram64);
const s = Curve.scalar.mulAdd(hram, key_pair.blind_secret_key.blind_scalar, nonce);
mem.copy(u8, sig[32..], s[0..]);
return sig;
}
return (try PublicKey.fromBytes(key_pair.blind_public_key.key.bytes))
.computeNonceAndSign(msg, noise, scalar, &prefix);
}
};
/// Compute a blind context from a blinding seed and a context.
fn blindCtx(blind_seed: [blind_seed_length]u8, ctx: []const u8) [Sha512.digest_length]u8 {
@ -306,7 +475,13 @@ pub const Ed25519 = struct {
hx.final(&blind_h);
return blind_h;
}
pub const sign = @compileError("deprecated; use BlindKeyPair.sign instead");
pub const unblindPublicKey = @compileError("deprecated; use BlindPublicKey.unblind instead");
};
pub const sign = @compileError("deprecated; use KeyPair.sign instead");
pub const verify = @compileError("deprecated; use PublicKey.verify instead");
};
test "ed25519 key pair creation" {
@ -314,8 +489,8 @@ test "ed25519 key pair creation" {
_ = try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.KeyPair.create(seed);
var buf: [256]u8 = undefined;
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&key_pair.secret_key)}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&key_pair.public_key)}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&key_pair.secret_key.toBytes())}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&key_pair.public_key.toBytes())}), "2D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
}
test "ed25519 signature" {
@ -323,11 +498,11 @@ test "ed25519 signature" {
_ = try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.KeyPair.create(seed);
const sig = try Ed25519.sign("test", key_pair, null);
const sig = try key_pair.sign("test", null);
var buf: [128]u8 = undefined;
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&sig)}), "10A442B4A80CC4225B154F43BEF28D2472CA80221951262EB8E0DF9091575E2687CC486E77263C3418C757522D54F84B0359236ABBBD4ACD20DC297FDCA66808");
try Ed25519.verify(sig, "test", key_pair.public_key);
try std.testing.expectError(error.SignatureVerificationFailed, Ed25519.verify(sig, "TEST", key_pair.public_key));
try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&sig.toBytes())}), "10A442B4A80CC4225B154F43BEF28D2472CA80221951262EB8E0DF9091575E2687CC486E77263C3418C757522D54F84B0359236ABBBD4ACD20DC297FDCA66808");
try sig.verify("test", key_pair.public_key);
try std.testing.expectError(error.SignatureVerificationFailed, sig.verify("TEST", key_pair.public_key));
}
test "ed25519 batch verification" {
@ -338,8 +513,8 @@ test "ed25519 batch verification" {
var msg2: [32]u8 = undefined;
crypto.random.bytes(&msg1);
crypto.random.bytes(&msg2);
const sig1 = try Ed25519.sign(&msg1, key_pair, null);
const sig2 = try Ed25519.sign(&msg2, key_pair, null);
const sig1 = try key_pair.sign(&msg1, null);
const sig2 = try key_pair.sign(&msg2, null);
var signature_batch = [_]Ed25519.BatchElement{
Ed25519.BatchElement{
.sig = sig1,
@ -355,9 +530,7 @@ test "ed25519 batch verification" {
try Ed25519.verifyBatch(2, signature_batch);
signature_batch[1].sig = sig1;
// TODO https://github.com/ziglang/zig/issues/12240
const sig_len = signature_batch.len;
try std.testing.expectError(error.SignatureVerificationFailed, Ed25519.verifyBatch(sig_len, signature_batch));
try std.testing.expectError(error.SignatureVerificationFailed, Ed25519.verifyBatch(signature_batch.len, signature_batch));
}
}
@ -446,20 +619,25 @@ test "ed25519 test vectors" {
for (entries) |entry| {
var msg: [entry.msg_hex.len / 2]u8 = undefined;
_ = try fmt.hexToBytes(&msg, entry.msg_hex);
var public_key: [32]u8 = undefined;
_ = try fmt.hexToBytes(&public_key, entry.public_key_hex);
var sig: [64]u8 = undefined;
_ = try fmt.hexToBytes(&sig, entry.sig_hex);
var public_key_bytes: [32]u8 = undefined;
_ = try fmt.hexToBytes(&public_key_bytes, entry.public_key_hex);
const public_key = Ed25519.PublicKey.fromBytes(public_key_bytes) catch |err| {
try std.testing.expectEqual(entry.expected.?, err);
continue;
};
var sig_bytes: [64]u8 = undefined;
_ = try fmt.hexToBytes(&sig_bytes, entry.sig_hex);
const sig = Ed25519.Signature.fromBytes(sig_bytes);
if (entry.expected) |error_type| {
try std.testing.expectError(error_type, Ed25519.verify(sig, &msg, public_key));
try std.testing.expectError(error_type, sig.verify(&msg, public_key));
} else {
try Ed25519.verify(sig, &msg, public_key);
try sig.verify(&msg, public_key);
}
}
}
test "ed25519 with blind keys" {
const BlindKeySignatures = Ed25519.BlindKeySignatures;
const BlindKeyPair = Ed25519.key_blinding.BlindKeyPair;
// Create a standard Ed25519 key pair
const kp = try Ed25519.KeyPair.create(null);
@ -469,14 +647,30 @@ test "ed25519 with blind keys" {
crypto.random.bytes(&blind);
// Blind the key pair
const blind_kp = try BlindKeySignatures.blind(kp, blind, "ctx");
const blind_kp = try BlindKeyPair.init(kp, blind, "ctx");
// Sign a message and check that it can be verified with the blind public key
const msg = "test";
const sig = try BlindKeySignatures.sign(msg, blind_kp, null);
try Ed25519.verify(sig, msg, blind_kp.blind_public_key);
const sig = try blind_kp.sign(msg, null);
try sig.verify(msg, blind_kp.blind_public_key.key);
// Unblind the public key
const pk = try BlindKeySignatures.unblindPublicKey(blind_kp.blind_public_key, blind, "ctx");
try std.testing.expectEqualSlices(u8, &pk, &kp.public_key);
const pk = try blind_kp.blind_public_key.unblind(blind, "ctx");
try std.testing.expectEqualSlices(u8, &pk.toBytes(), &kp.public_key.toBytes());
}
test "ed25519 signatures with streaming" {
const kp = try Ed25519.KeyPair.create(null);
var signer = try kp.signer(null);
signer.update("mes");
signer.update("sage");
const sig = signer.finalize();
try sig.verify("message", kp.public_key);
var verifier = try sig.verifier(kp.public_key);
verifier.update("mess");
verifier.update("age");
try verifier.verify();
}

View File

@ -44,9 +44,9 @@ pub const X25519 = struct {
/// Create a key pair from an Ed25519 key pair
pub fn fromEd25519(ed25519_key_pair: crypto.sign.Ed25519.KeyPair) (IdentityElementError || EncodingError)!KeyPair {
const seed = ed25519_key_pair.secret_key[0..32];
const seed = ed25519_key_pair.secret_key.seed();
var az: [Sha512.digest_length]u8 = undefined;
Sha512.hash(seed, &az, .{});
Sha512.hash(&seed, &az, .{});
var sk = az[0..32].*;
Curve.scalar.clamp(&sk);
const pk = try publicKeyFromEd25519(ed25519_key_pair.public_key);
@ -64,8 +64,8 @@ pub const X25519 = struct {
}
/// Compute the X25519 equivalent to an Ed25519 public eky.
pub fn publicKeyFromEd25519(ed25519_public_key: [crypto.sign.Ed25519.public_length]u8) (IdentityElementError || EncodingError)![public_length]u8 {
const pk_ed = try crypto.ecc.Edwards25519.fromBytes(ed25519_public_key);
pub fn publicKeyFromEd25519(ed25519_public_key: crypto.sign.Ed25519.PublicKey) (IdentityElementError || EncodingError)![public_length]u8 {
const pk_ed = try crypto.ecc.Edwards25519.fromBytes(ed25519_public_key.bytes);
const pk = try Curve.fromEdwards25519(pk_ed);
return pk.toBytes();
}

View File

@ -130,7 +130,7 @@ pub fn benchmarkSignature(comptime Signature: anytype, comptime signatures_count
{
var i: usize = 0;
while (i < signatures_count) : (i += 1) {
const sig = try Signature.sign(&msg, key_pair, null);
const sig = try key_pair.sign(&msg, null);
mem.doNotOptimizeAway(&sig);
}
}
@ -147,14 +147,14 @@ const signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed25519, .na
pub fn benchmarkSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.KeyPair.create(null);
const sig = try Signature.sign(&msg, key_pair, null);
const sig = try key_pair.sign(&msg, null);
var timer = try Timer.start();
const start = timer.lap();
{
var i: usize = 0;
while (i < signatures_count) : (i += 1) {
try Signature.verify(sig, &msg, key_pair.public_key);
try sig.verify(&msg, key_pair.public_key);
mem.doNotOptimizeAway(&sig);
}
}
@ -171,7 +171,7 @@ const batch_signature_verifications = [_]Crypto{Crypto{ .ty = crypto.sign.Ed2551
pub fn benchmarkBatchSignatureVerification(comptime Signature: anytype, comptime signatures_count: comptime_int) !u64 {
const msg = [_]u8{0} ** 64;
const key_pair = try Signature.KeyPair.create(null);
const sig = try Signature.sign(&msg, key_pair, null);
const sig = try key_pair.sign(&msg, null);
var batch: [64]Signature.BatchElement = undefined;
for (batch) |*element| {
@ -301,9 +301,13 @@ const CryptoPwhash = struct {
params: *const anyopaque,
name: []const u8,
};
const bcrypt_params = crypto.pwhash.bcrypt.Params{ .rounds_log = 12 };
const bcrypt_params = crypto.pwhash.bcrypt.Params{ .rounds_log = 8 };
const pwhashes = [_]CryptoPwhash{
.{ .ty = crypto.pwhash.bcrypt, .params = &bcrypt_params, .name = "bcrypt" },
.{
.ty = crypto.pwhash.bcrypt,
.params = &bcrypt_params,
.name = "bcrypt",
},
.{
.ty = crypto.pwhash.scrypt,
.params = &crypto.pwhash.scrypt.Params.interactive,
@ -323,7 +327,11 @@ fn benchmarkPwhash(
comptime count: comptime_int,
) !f64 {
const password = "testpass" ** 2;
const opts = .{ .allocator = allocator, .params = @ptrCast(*const ty.Params, params).*, .encoding = .phc };
const opts = .{
.allocator = allocator,
.params = @ptrCast(*const ty.Params, @alignCast(std.meta.alignment(ty.Params), params)).*,
.encoding = .phc,
};
var buf: [256]u8 = undefined;
var timer = try Timer.start();