* outputs can have names and be referenced with template replacements
the same as inputs.
* fix print_air.zig not decoding correctly.
* LLVM backend: use a table for template names for simplicity
Instead of doing heterogeneous comparison at comptime. This makes the
following test pass (as it already does for stage1):
```zig
test {
const x: f64 = 12.34;
expect(x == 12.34);
}
```
There is already behavior test coverage for this, however, other bugs in
`std.fmt.parseFloat` are masking the failures.
From a language specification perspective, this makes sense because it
makes comptime comparisons with comptime_float work the same way they
work with runtime comparisons.
Maybe after we have incremental compilation metadata serialization
and non-LLVM backends, it will make sense to switch this back. For now,
however, this makes successive `zig build` commands much faster.
Just like for Struct in 8238d4b33585a715c58ab559cd001dd3ea1db55b, in the
case of ErrorUnion struct we need to return a compound literal "(T){...}"
instead of just "{}", which is invalid code when used in e.g. a "return"
expression.
* Sema: Correctly determine whether array_cat lhs and rhs are single ptrs
Many-pointers are also not single-pointers and wouldn't be considered
here. This commit makes the conditions use the appropriately-named
isSinglePointer instead.
* Sema: Correctly obtain ArrayInfo for many-pointer concatenation
Many-pointers at comptime have a known size like slices and can be used
in array concatenation. This fixes a stage1 regression.
* test: Add comptime manyptr concatenation test
Co-authored-by: sin-ack <sin-ack@users.noreply.github.com>
Instead, just return ChildProcess directly. This structure does not
require a stable address, so we can put it on the stack just fine. If
someone wants it on the heap they should do.
const proc = try allocator.create(ChildProcess);
proc.* = ChildProcess.init(args, allocator);
To correctly handle multiple backends crossed with multiple targets,
we need to push all elements in separate allocated arrays rather
than operate on raw iterators. Hence, introduce `getConfigForKeyAlloc`.
Provide default parsers for obvious config options such as
`CrossTarget` or `Backend` (or any enum for that matter).
Unroll iterator loops into multiple cases - we need to create
a Cartesian product for all possibilities specified in the
test manifest.
Before this change, struct {f80, f80} targeting i386-windows-msvc lowers
to
```llvm
%"std.testing.struct:78:61.6" = type { x86_fp80, [6 x i8], x86_fp80, [6 x i8] }
```
which has an incorrect ABI size of 40. After this change, the struct
lowers to
```llvm
%"std.testing.struct:78:61.6" = type { x86_fp80, [4 x i8], x86_fp80, [4 x i8] }
```
which has the correct ABI size of 32, and properly aligns the second
field to 16 bytes.
The other place that calculates field padding (lowering of constant
values in codegen.cpp) already correctly calls LLVMABISizeOfType
rather than LLVMStoreSizeOfType.
This fixes the compiler-rt tests for i386-windows in this branch.
These are only as accurate as f64 even for f128 comptime functions. This
is OK for now; improvements will come with the launch of self-hosted
(#89) and enhancements to compiler-rt implementations.
The reason for having `@tan` is that we already have `@sin` and `@cos`
because some targets have machine code instructions for them, but in the
case that the implementation needs to go into compiler-rt, sin, cos, and
tan all share a common dependency which includes a table of data. To
avoid duplicating this table of data, we promote tan to become a builtin
alongside sin and cos.
ZIR: The tag enum is at capacity so this commit moves
`field_call_bind_named` to be `extended`. I measured this as one of
the least used tags in the zig codebase.
Fix libc math suffix for `f32` being wrong in both stage1 and stage2.
stage1: add missing libc prefix for float functions.
* std.math.snan: fix compilation error. Also make it and nan inline.
* LLVM: use a proper enum type for float op instead of enum literal.
Also various cleanups.
* LLVM: use LLVMBuildVectorSplat for vector splat AIR instruction.
- also the bindings had parameter order wrong
* LLVM: additionally handle f16 lowering. For now all targets report OK
but I think we will need to add some exceptions to this list.
Updates stage2 to manually lower softfloat operations for all unary
floating point operations and arithmetic.
Softfloat support still needs to be added for conversion operators
(float<->float and int<->float)
* unify the logic for exporting math functions from compiler-rt,
with the appropriate suffixes and prefixes.
- add all missing f128 and f80 exports. Functions with missing
implementations call other functions and have TODO comments.
- also add f16 functions
* move math functions from freestanding libc to compiler-rt (#7265)
* enable all the f128 and f80 code in the stage2 compiler and behavior
tests (#11161).
* update std lib to use builtins rather than `std.math`.