stage1: Manually lower softfloat ops when needed

Updates stage1 to manually lower softfloat operations for all unary
floating point operations, extension/truncation, and arithmetic.
This commit is contained in:
Cody Tapscott 2022-04-26 15:16:37 -07:00 committed by Andrew Kelley
parent 41dd2beaac
commit 0e8242b905
5 changed files with 395 additions and 333 deletions

View File

@ -10375,7 +10375,7 @@ void ZigValue::dump() {
// float ops that take a single argument
//TODO Powi, Pow, minnum, maxnum, maximum, minimum, copysign, lround, llround, lrint, llrint
const char *float_op_to_name(BuiltinFnId op) {
const char *float_un_op_to_name(BuiltinFnId op) {
switch (op) {
case BuiltinFnIdSqrt:
return "sqrt";
@ -10405,6 +10405,8 @@ const char *float_op_to_name(BuiltinFnId op) {
return "nearbyint";
case BuiltinFnIdRound:
return "round";
case BuiltinFnIdMulAdd:
return "fma";
default:
zig_unreachable();
}

View File

@ -307,7 +307,7 @@ void copy_const_val(CodeGen *g, ZigValue *dest, ZigValue *src);
bool type_has_optional_repr(ZigType *ty);
bool is_opt_err_set(ZigType *ty);
bool type_is_numeric(ZigType *ty);
const char *float_op_to_name(BuiltinFnId op);
const char *float_un_op_to_name(BuiltinFnId op);
#define src_assert(OK, SOURCE_NODE) src_assert_impl((OK), (SOURCE_NODE), __FILE__, __LINE__)

View File

@ -869,7 +869,7 @@ static LLVMValueRef get_float_fn(CodeGen *g, ZigType *type_entry, ZigLLVMFnId fn
name = "fma";
num_args = 3;
} else if (fn_id == ZigLLVMFnIdFloatOp) {
name = float_op_to_name(op);
name = float_un_op_to_name(op);
num_args = 1;
} else {
zig_unreachable();
@ -1604,8 +1604,49 @@ static LLVMValueRef gen_assert_zero(CodeGen *g, LLVMValueRef expr_val, ZigType *
return nullptr;
}
static const char *get_compiler_rt_type_abbrev(ZigType *type) {
uint16_t bits;
if (type->id == ZigTypeIdFloat) {
bits = type->data.floating.bit_count;
} else if (type->id == ZigTypeIdInt) {
bits = type->data.integral.bit_count;
} else {
zig_unreachable();
}
switch (bits) {
case 16:
return "h";
case 32:
return "s";
case 64:
return "d";
case 80:
return "x";
case 128:
return "t";
default:
zig_unreachable();
}
}
static LLVMValueRef gen_soft_f80_widen_or_shorten(CodeGen *g, ZigType *actual_type,
static const char *get_math_h_type_abbrev(CodeGen *g, ZigType *float_type) {
if (float_type == g->builtin_types.entry_f16)
return "h"; // Non-standard
else if (float_type == g->builtin_types.entry_f32)
return "s";
else if (float_type == g->builtin_types.entry_f64)
return "";
else if (float_type == g->builtin_types.entry_f80)
return "x"; // Non-standard
else if (float_type == g->builtin_types.entry_c_longdouble)
return "l";
else if (float_type == g->builtin_types.entry_f128)
return "q"; // Non-standard
else
zig_unreachable();
}
static LLVMValueRef gen_soft_float_widen_or_shorten(CodeGen *g, ZigType *actual_type,
ZigType *wanted_type, LLVMValueRef expr_val)
{
ZigType *scalar_actual_type = (actual_type->id == ZigTypeIdVector) ?
@ -1615,87 +1656,47 @@ static LLVMValueRef gen_soft_f80_widen_or_shorten(CodeGen *g, ZigType *actual_ty
uint64_t actual_bits = scalar_actual_type->data.floating.bit_count;
uint64_t wanted_bits = scalar_wanted_type->data.floating.bit_count;
LLVMTypeRef param_type;
LLVMTypeRef return_type;
const char *func_name;
if (actual_bits == wanted_bits)
return expr_val;
LLVMValueRef result;
bool castTruncatedToF16 = false;
if (actual_bits == wanted_bits) {
return expr_val;
} else if (actual_bits == 80) {
param_type = g->builtin_types.entry_f80->llvm_type;
switch (wanted_bits) {
case 16:
// Only Arm has a native f16 type, other platforms soft-implement it
// using u16 instead.
if (target_is_arm(g->zig_target)) {
return_type = g->builtin_types.entry_f16->llvm_type;
} else {
return_type = g->builtin_types.entry_u16->llvm_type;
castTruncatedToF16 = true;
}
func_name = "__truncxfhf2";
break;
case 32:
return_type = g->builtin_types.entry_f32->llvm_type;
func_name = "__truncxfsf2";
break;
case 64:
return_type = g->builtin_types.entry_f64->llvm_type;
func_name = "__truncxfdf2";
break;
case 128:
return_type = g->builtin_types.entry_f128->llvm_type;
func_name = "__extendxftf2";
break;
default:
zig_unreachable();
}
} else if (wanted_bits == 80) {
return_type = g->builtin_types.entry_f80->llvm_type;
switch (actual_bits) {
case 16:
// Only Arm has a native f16 type, other platforms soft-implement it
// using u16 instead.
if (target_is_arm(g->zig_target)) {
param_type = g->builtin_types.entry_f16->llvm_type;
} else {
param_type = g->builtin_types.entry_u16->llvm_type;
expr_val = LLVMBuildBitCast(g->builder, expr_val, param_type, "");
}
func_name = "__extendhfxf2";
break;
case 32:
param_type = g->builtin_types.entry_f32->llvm_type;
func_name = "__extendsfxf2";
break;
case 64:
param_type = g->builtin_types.entry_f64->llvm_type;
func_name = "__extenddfxf2";
break;
case 128:
param_type = g->builtin_types.entry_f128->llvm_type;
func_name = "__trunctfxf2";
break;
default:
zig_unreachable();
}
char fn_name[64];
if (wanted_bits < actual_bits) {
sprintf(fn_name, "__trunc%sf%sf2",
get_compiler_rt_type_abbrev(scalar_actual_type),
get_compiler_rt_type_abbrev(scalar_wanted_type));
} else {
zig_unreachable();
sprintf(fn_name, "__extend%sf%sf2",
get_compiler_rt_type_abbrev(scalar_actual_type),
get_compiler_rt_type_abbrev(scalar_wanted_type));
}
LLVMValueRef func_ref = LLVMGetNamedFunction(g->module, func_name);
LLVMTypeRef return_type = scalar_wanted_type->llvm_type;
LLVMTypeRef param_type = scalar_actual_type->llvm_type;
if (!target_is_arm(g->zig_target)) {
// Only Arm has a native f16 type, other platforms soft-implement it using u16 instead.
if (scalar_wanted_type == g->builtin_types.entry_f16) {
return_type = g->builtin_types.entry_u16->llvm_type;
castTruncatedToF16 = true;
}
if (scalar_actual_type == g->builtin_types.entry_f16) {
param_type = g->builtin_types.entry_u16->llvm_type;
expr_val = LLVMBuildBitCast(g->builder, expr_val, param_type, "");
}
}
LLVMValueRef func_ref = LLVMGetNamedFunction(g->module, fn_name);
if (func_ref == nullptr) {
LLVMTypeRef fn_type = LLVMFunctionType(return_type, &param_type, 1, false);
func_ref = LLVMAddFunction(g->module, func_name, fn_type);
func_ref = LLVMAddFunction(g->module, fn_name, fn_type);
}
result = LLVMBuildCall(g->builder, func_ref, &expr_val, 1, "");
// On non-Arm platforms we need to bitcast __truncxfhf2 result back to f16
// On non-Arm platforms we need to bitcast __trunc<>fhf2 result back to f16
if (castTruncatedToF16) {
result = LLVMBuildBitCast(g->builder, result, g->builtin_types.entry_f16->llvm_type, "");
}
@ -1721,7 +1722,7 @@ static LLVMValueRef gen_widen_or_shorten(CodeGen *g, bool want_runtime_safety, Z
|| scalar_wanted_type == g->builtin_types.entry_f80)
&& !target_has_f80(g->zig_target))
{
return gen_soft_f80_widen_or_shorten(g, actual_type, wanted_type, expr_val);
return gen_soft_float_widen_or_shorten(g, actual_type, wanted_type, expr_val);
}
actual_bits = scalar_actual_type->data.floating.bit_count;
wanted_bits = scalar_wanted_type->data.floating.bit_count;
@ -2978,10 +2979,50 @@ static LLVMValueRef gen_overflow_shr_op(CodeGen *g, ZigType *operand_type,
return result;
}
static LLVMValueRef gen_float_op(CodeGen *g, LLVMValueRef val, ZigType *type_entry, BuiltinFnId op) {
assert(type_entry->id == ZigTypeIdFloat || type_entry->id == ZigTypeIdVector);
LLVMValueRef floor_fn = get_float_fn(g, type_entry, ZigLLVMFnIdFloatOp, op);
return LLVMBuildCall(g->builder, floor_fn, &val, 1, "");
static LLVMValueRef get_soft_float_fn(CodeGen *g, const char *name, int param_count, LLVMTypeRef param_type, LLVMTypeRef return_type) {
LLVMValueRef existing_llvm_fn = LLVMGetNamedFunction(g->module, name);
if (existing_llvm_fn != nullptr) return existing_llvm_fn;
LLVMValueRef existing_llvm_alias = LLVMGetNamedGlobalAlias(g->module, name, strlen(name));
if (existing_llvm_alias != nullptr) return LLVMAliasGetAliasee(existing_llvm_alias);
LLVMTypeRef param_types[3] = { param_type, param_type, param_type };
LLVMTypeRef fn_type = LLVMFunctionType(return_type, param_types, param_count, false);
return LLVMAddFunction(g->module, name, fn_type);
}
static LLVMValueRef gen_soft_float_un_op(CodeGen *g, LLVMValueRef op, ZigType *operand_type, BuiltinFnId op_id) {
uint32_t vector_len = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.len : 0;
char fn_name[64];
sprintf(fn_name, "%s%s", float_un_op_to_name(op_id), get_math_h_type_abbrev(g, operand_type));
LLVMValueRef func_ref = get_soft_float_fn(g, fn_name, 1, operand_type->llvm_type, operand_type->llvm_type);
LLVMValueRef result;
if (vector_len == 0) {
return LLVMBuildCall(g->builder, func_ref, &op, 1, "");
} else {
result = build_alloca(g, operand_type, "", 0);
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef param = LLVMBuildExtractElement(g->builder, op, index_value, "");
LLVMValueRef call_result = LLVMBuildCall(g->builder, func_ref, &param, 1, "");
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
call_result, index_value, "");
}
return LLVMBuildLoad(g->builder, result, "");
}
}
static LLVMValueRef gen_float_un_op(CodeGen *g, LLVMValueRef operand, ZigType *operand_type, BuiltinFnId op) {
assert(operand_type->id == ZigTypeIdFloat || operand_type->id == ZigTypeIdVector);
ZigType *elem_type = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.elem_type : operand_type;
if ((elem_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) ||
(elem_type == g->builtin_types.entry_f128 && !target_long_double_is_f128(g->zig_target))) {
return gen_soft_float_un_op(g, operand, operand_type, op);
}
LLVMValueRef float_op_fn = get_float_fn(g, operand_type, ZigLLVMFnIdFloatOp, op);
return LLVMBuildCall(g->builder, float_op_fn, &operand, 1, "");
}
enum DivKind {
@ -3088,7 +3129,7 @@ static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast
case DivKindExact:
if (want_runtime_safety) {
// Safety check: a / b == floor(a / b)
LLVMValueRef floored = gen_float_op(g, result, operand_type, BuiltinFnIdFloor);
LLVMValueRef floored = gen_float_un_op(g, result, operand_type, BuiltinFnIdFloor);
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail");
@ -3105,9 +3146,9 @@ static LLVMValueRef gen_div(CodeGen *g, bool want_runtime_safety, bool want_fast
}
return result;
case DivKindTrunc:
return gen_float_op(g, result, operand_type, BuiltinFnIdTrunc);
return gen_float_un_op(g, result, operand_type, BuiltinFnIdTrunc);
case DivKindFloor:
return gen_float_op(g, result, operand_type, BuiltinFnIdFloor);
return gen_float_un_op(g, result, operand_type, BuiltinFnIdFloor);
}
zig_unreachable();
}
@ -3269,17 +3310,7 @@ static void gen_shift_rhs_check(CodeGen *g, ZigType *lhs_type, ZigType *rhs_type
}
}
static LLVMValueRef get_soft_f80_bin_op_func(CodeGen *g, const char *name, int param_count, LLVMTypeRef return_type) {
LLVMValueRef existing_llvm_fn = LLVMGetNamedFunction(g->module, name);
if (existing_llvm_fn != nullptr) return existing_llvm_fn;
LLVMTypeRef float_type_ref = g->builtin_types.entry_f80->llvm_type;
LLVMTypeRef param_types[2] = { float_type_ref, float_type_ref };
LLVMTypeRef fn_type = LLVMFunctionType(return_type, param_types, param_count, false);
return LLVMAddFunction(g->module, name, fn_type);
}
enum SoftF80Icmp {
enum Icmp {
NONE,
EQ_ZERO,
NE_ZERO,
@ -3289,7 +3320,7 @@ enum SoftF80Icmp {
EQ_ONE,
};
static LLVMValueRef add_f80_icmp(CodeGen *g, LLVMValueRef val, SoftF80Icmp kind) {
static LLVMValueRef add_icmp(CodeGen *g, LLVMValueRef val, Icmp kind) {
switch (kind) {
case NONE:
return val;
@ -3322,22 +3353,123 @@ static LLVMValueRef add_f80_icmp(CodeGen *g, LLVMValueRef val, SoftF80Icmp kind)
}
}
static LLVMValueRef ir_render_soft_f80_bin_op(CodeGen *g, Stage1Air *executable,
Stage1AirInstBinOp *bin_op_instruction)
{
IrBinOp op_id = bin_op_instruction->op_id;
Stage1AirInst *op1 = bin_op_instruction->op1;
Stage1AirInst *op2 = bin_op_instruction->op2;
uint32_t vector_len = op1->value->type->id == ZigTypeIdVector ? op1->value->type->data.vector.len : 0;
static LLVMValueRef gen_soft_int_to_float_op(CodeGen *g, LLVMValueRef value_ref, ZigType *operand_type, ZigType *result_type) {
uint32_t vector_len = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.len : 0;
LLVMValueRef op1_value = ir_llvm_value(g, op1);
LLVMValueRef op2_value = ir_llvm_value(g, op2);
// Handle integers of non-pot bitsize by widening them.
const size_t bitsize = operand_type->data.integral.bit_count;
const bool is_signed = operand_type->data.integral.is_signed;
if (bitsize < 32 || !is_power_of_2(bitsize)) {
const size_t wider_bitsize = bitsize < 32 ? 32 : round_to_next_power_of_2(bitsize);
ZigType *const wider_type = get_int_type(g, is_signed, wider_bitsize);
value_ref = gen_widen_or_shorten(g, false, operand_type, wider_type, value_ref);
operand_type = wider_type;
}
assert(bitsize <= 128);
bool div_exact_safety_check = false;
LLVMTypeRef return_type = g->builtin_types.entry_f80->llvm_type;
const char *int_compiler_rt_type_abbrev = get_compiler_rt_type_abbrev(operand_type);
const char *float_compiler_rt_type_abbrev = get_compiler_rt_type_abbrev(result_type);
char fn_name[64];
if (is_signed) {
sprintf(fn_name, "__float%si%sf", int_compiler_rt_type_abbrev, float_compiler_rt_type_abbrev);
} else {
sprintf(fn_name, "__floatun%si%sf", int_compiler_rt_type_abbrev, float_compiler_rt_type_abbrev);
}
int param_count = 1;
LLVMValueRef func_ref = get_soft_float_fn(g, fn_name, param_count, operand_type->llvm_type, result_type->llvm_type);
LLVMValueRef result;
if (vector_len == 0) {
LLVMValueRef params[1] = {value_ref};
result = LLVMBuildCall(g->builder, func_ref, params, param_count, "");
} else {
ZigType *alloca_ty = operand_type;
result = build_alloca(g, alloca_ty, "", 0);
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef params[1] = {
LLVMBuildExtractElement(g->builder, value_ref, index_value, ""),
};
LLVMValueRef call_result = LLVMBuildCall(g->builder, func_ref, params, param_count, "");
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
call_result, index_value, "");
}
result = LLVMBuildLoad(g->builder, result, "");
}
return result;
}
static LLVMValueRef gen_soft_float_to_int_op(CodeGen *g, LLVMValueRef value_ref, ZigType *operand_type, ZigType *result_type) {
uint32_t vector_len = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.len : 0;
// Handle integers of non-pot bitsize by truncating a sufficiently wide pot integer
const size_t bitsize = result_type->data.integral.bit_count;
const bool is_signed = result_type->data.integral.is_signed;
ZigType * wider_type = result_type;
if (bitsize < 32 || !is_power_of_2(bitsize)) {
const size_t wider_bitsize = bitsize < 32 ? 32 : round_to_next_power_of_2(bitsize);
wider_type = get_int_type(g, is_signed, wider_bitsize);
}
assert(bitsize <= 128);
const char *float_compiler_rt_type_abbrev = get_compiler_rt_type_abbrev(operand_type);
const char *int_compiler_rt_type_abbrev = get_compiler_rt_type_abbrev(wider_type);
char fn_name[64];
if (is_signed) {
sprintf(fn_name, "__fix%sf%si", float_compiler_rt_type_abbrev, int_compiler_rt_type_abbrev);
} else {
sprintf(fn_name, "__fixuns%sf%si", float_compiler_rt_type_abbrev, int_compiler_rt_type_abbrev);
}
int param_count = 1;
LLVMValueRef func_ref = get_soft_float_fn(g, fn_name, param_count, operand_type->llvm_type, wider_type->llvm_type);
LLVMValueRef result;
if (vector_len == 0) {
LLVMValueRef params[1] = {value_ref};
result = LLVMBuildCall(g->builder, func_ref, params, param_count, "");
} else {
ZigType *alloca_ty = operand_type;
result = build_alloca(g, alloca_ty, "", 0);
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef params[1] = {
LLVMBuildExtractElement(g->builder, value_ref, index_value, ""),
};
LLVMValueRef call_result = LLVMBuildCall(g->builder, func_ref, params, param_count, "");
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
call_result, index_value, "");
}
result = LLVMBuildLoad(g->builder, result, "");
}
// Handle integers of non-pot bitsize by shortening them on the output
if (result_type != wider_type) {
return gen_widen_or_shorten(g, false, wider_type, result_type, result);
}
return result;
}
static LLVMValueRef gen_soft_float_bin_op(CodeGen *g, LLVMValueRef op1_value, LLVMValueRef op2_value, ZigType *operand_type, IrBinOp op_id) {
uint32_t vector_len = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.len : 0;
LLVMTypeRef return_type = operand_type->llvm_type;
int param_count = 2;
const char *func_name;
SoftF80Icmp res_icmp = NONE;
const char *compiler_rt_type_abbrev = get_compiler_rt_type_abbrev(operand_type);
const char *math_h_type_abbrev = get_math_h_type_abbrev(g, operand_type);
char fn_name[64];
Icmp res_icmp = NONE;
switch (op_id) {
case IrBinOpInvalid:
case IrBinOpArrayCat:
@ -3362,152 +3494,129 @@ static LLVMValueRef ir_render_soft_f80_bin_op(CodeGen *g, Stage1Air *executable,
zig_unreachable();
case IrBinOpCmpEq:
return_type = g->builtin_types.entry_i32->llvm_type;
func_name = "__eqxf2";
sprintf(fn_name, "__eq%sf2", compiler_rt_type_abbrev);
res_icmp = EQ_ZERO;
break;
case IrBinOpCmpNotEq:
return_type = g->builtin_types.entry_i32->llvm_type;
func_name = "__nexf2";
sprintf(fn_name, "__ne%sf2", compiler_rt_type_abbrev);
res_icmp = NE_ZERO;
break;
case IrBinOpCmpLessOrEq:
return_type = g->builtin_types.entry_i32->llvm_type;
func_name = "__lexf2";
sprintf(fn_name, "__le%sf2", compiler_rt_type_abbrev);
res_icmp = LE_ZERO;
break;
case IrBinOpCmpLessThan:
return_type = g->builtin_types.entry_i32->llvm_type;
func_name = "__lexf2";
sprintf(fn_name, "__le%sf2", compiler_rt_type_abbrev);
res_icmp = EQ_NEG;
break;
case IrBinOpCmpGreaterOrEq:
return_type = g->builtin_types.entry_i32->llvm_type;
func_name = "__gexf2";
sprintf(fn_name, "__ge%sf2", compiler_rt_type_abbrev);
res_icmp = GE_ZERO;
break;
case IrBinOpCmpGreaterThan:
return_type = g->builtin_types.entry_i32->llvm_type;
func_name = "__gexf2";
sprintf(fn_name, "__ge%sf2", compiler_rt_type_abbrev);
res_icmp = EQ_ONE;
break;
case IrBinOpMaximum:
func_name = "__fmaxx";
sprintf(fn_name, "fmax%s", math_h_type_abbrev);
break;
case IrBinOpMinimum:
func_name = "__fminx";
sprintf(fn_name, "fmin%s", math_h_type_abbrev);
break;
case IrBinOpMult:
func_name = "__mulxf3";
sprintf(fn_name, "__mul%sf3", compiler_rt_type_abbrev);
break;
case IrBinOpAdd:
func_name = "__addxf3";
sprintf(fn_name, "__add%sf3", compiler_rt_type_abbrev);
break;
case IrBinOpSub:
func_name = "__subxf3";
sprintf(fn_name, "__sub%sf3", compiler_rt_type_abbrev);
break;
case IrBinOpDivUnspecified:
func_name = "__divxf3";
break;
case IrBinOpDivExact:
func_name = "__divxf3";
div_exact_safety_check = bin_op_instruction->safety_check_on &&
ir_want_runtime_safety(g, &bin_op_instruction->base);
break;
case IrBinOpDivTrunc:
param_count = 1;
func_name = "__truncx";
break;
case IrBinOpDivFloor:
param_count = 1;
func_name = "__floorx";
sprintf(fn_name, "__div%sf3", compiler_rt_type_abbrev);
break;
case IrBinOpRemRem:
param_count = 1;
func_name = "__remx";
break;
case IrBinOpRemMod:
param_count = 1;
func_name = "__modx";
sprintf(fn_name, "fmod%s", math_h_type_abbrev);
break;
default:
zig_unreachable();
}
LLVMValueRef func_ref = get_soft_f80_bin_op_func(g, func_name, param_count, return_type);
LLVMValueRef func_ref = get_soft_float_fn(g, fn_name, param_count, operand_type->llvm_type, return_type);
LLVMValueRef result;
if (vector_len == 0) {
LLVMValueRef params[2] = {op1_value, op2_value};
result = LLVMBuildCall(g->builder, func_ref, params, param_count, "");
result = add_f80_icmp(g, result, res_icmp);
result = add_icmp(g, result, res_icmp);
} else {
ZigType *alloca_ty = op1->value->type;
ZigType *alloca_ty = operand_type;
if (res_icmp != NONE) alloca_ty = get_vector_type(g, vector_len, g->builtin_types.entry_bool);
result = build_alloca(g, alloca_ty, "", 0);
}
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef params[2] = {
LLVMBuildExtractElement(g->builder, op1_value, index_value, ""),
LLVMBuildExtractElement(g->builder, op2_value, index_value, ""),
};
LLVMValueRef call_result = LLVMBuildCall(g->builder, func_ref, params, param_count, "");
call_result = add_f80_icmp(g, call_result, res_icmp);
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
call_result, index_value, "");
}
if (div_exact_safety_check) {
// Safety check: a / b == floor(a / b)
LLVMValueRef floor_func = get_soft_f80_bin_op_func(g, "__floorx", 1, return_type);
LLVMValueRef eq_func = get_soft_f80_bin_op_func(g, "__eqxf2", 2, g->builtin_types.entry_i32->llvm_type);
LLVMValueRef ok_bit;
if (vector_len == 0) {
LLVMValueRef floored = LLVMBuildCall(g->builder, floor_func, &result, 1, "");
LLVMValueRef params[2] = {result, floored};
ok_bit = LLVMBuildCall(g->builder, eq_func, params, 2, "");
} else {
ZigType *bool_vec_ty = get_vector_type(g, vector_len, g->builtin_types.entry_bool);
ok_bit = build_alloca(g, bool_vec_ty, "", 0);
}
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef div_res = LLVMBuildExtractElement(g->builder,
LLVMBuildLoad(g->builder, result, ""), index_value, "");
LLVMValueRef params[2] = {
div_res,
LLVMBuildCall(g->builder, floor_func, &div_res, 1, ""),
LLVMBuildExtractElement(g->builder, op1_value, index_value, ""),
LLVMBuildExtractElement(g->builder, op2_value, index_value, ""),
};
LLVMValueRef cmp_res = LLVMBuildCall(g->builder, eq_func, params, 2, "");
cmp_res = LLVMBuildTrunc(g->builder, cmp_res, g->builtin_types.entry_bool->llvm_type, "");
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, ok_bit, ""),
cmp_res, index_value, "");
LLVMValueRef call_result = LLVMBuildCall(g->builder, func_ref, params, param_count, "");
call_result = add_icmp(g, call_result, res_icmp);
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
call_result, index_value, "");
}
if (vector_len != 0) {
ok_bit = ZigLLVMBuildAndReduce(g->builder, LLVMBuildLoad(g->builder, ok_bit, ""));
}
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_safety_crash(g, PanicMsgIdExactDivisionRemainder);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
if (vector_len != 0) {
result = LLVMBuildLoad(g->builder, result, "");
}
return result;
// Some operations are implemented as compound ops and require us to perform some
// more operations before we obtain the final result
switch (op_id) {
case IrBinOpDivTrunc:
return gen_float_un_op(g, result, operand_type, BuiltinFnIdTrunc);
case IrBinOpDivFloor:
return gen_float_un_op(g, result, operand_type, BuiltinFnIdFloor);
case IrBinOpRemMod:
{
LLVMValueRef b = gen_soft_float_bin_op(g, result, op2_value, operand_type, IrBinOpAdd);
LLVMValueRef wrapped_result = gen_soft_float_bin_op(g, b, op2_value, operand_type, IrBinOpRemRem);
LLVMValueRef zero = LLVMConstNull(operand_type->llvm_type);
LLVMValueRef ltz = gen_soft_float_bin_op(g, op1_value, zero, operand_type, IrBinOpCmpLessThan);
return LLVMBuildSelect(g->builder, ltz, wrapped_result, result, "");
}
case IrBinOpDivExact:
{
LLVMValueRef floored = gen_float_un_op(g, result, operand_type, BuiltinFnIdFloor);
LLVMValueRef ok_bit = gen_soft_float_bin_op(g, result, floored, operand_type, IrBinOpCmpEq);
if (vector_len != 0) {
ok_bit = ZigLLVMBuildAndReduce(g->builder, ok_bit);
}
LLVMBasicBlockRef ok_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactOk");
LLVMBasicBlockRef fail_block = LLVMAppendBasicBlock(g->cur_fn_val, "DivExactFail");
LLVMBuildCondBr(g->builder, ok_bit, ok_block, fail_block);
LLVMPositionBuilderAtEnd(g->builder, fail_block);
gen_safety_crash(g, PanicMsgIdExactDivisionRemainder);
LLVMPositionBuilderAtEnd(g->builder, ok_block);
}
return result;
default:
return result;
}
zig_unreachable();
}
static LLVMValueRef ir_render_bin_op(CodeGen *g, Stage1Air *executable,
@ -3519,8 +3628,13 @@ static LLVMValueRef ir_render_bin_op(CodeGen *g, Stage1Air *executable,
ZigType *operand_type = op1->value->type;
ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ? operand_type->data.vector.elem_type : operand_type;
if (scalar_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) {
return ir_render_soft_f80_bin_op(g, executable, bin_op_instruction);
if ((scalar_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) ||
(scalar_type == g->builtin_types.entry_f128 && !target_long_double_is_f128(g->zig_target))) {
// LLVM incorrectly lowers the soft float calls for f128 as if they operated on `long double`.
// On some targets this will be incorrect, so we manually lower the call ourselves.
LLVMValueRef op1_value = ir_llvm_value(g, op1);
LLVMValueRef op2_value = ir_llvm_value(g, op2);
return gen_soft_float_bin_op(g, op1_value, op2_value, operand_type, op_id);
}
@ -3828,10 +3942,17 @@ static LLVMValueRef ir_render_cast(CodeGen *g, Stage1Air *executable,
}
case CastOpIntToFloat:
assert(actual_type->id == ZigTypeIdInt);
if (actual_type->data.integral.is_signed) {
return LLVMBuildSIToFP(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
} else {
return LLVMBuildUIToFP(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
{
if ((wanted_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) ||
(wanted_type == g->builtin_types.entry_f128 && !target_long_double_is_f128(g->zig_target))) {
return gen_soft_int_to_float_op(g, expr_val, actual_type, wanted_type);
} else {
if (actual_type->data.integral.is_signed) {
return LLVMBuildSIToFP(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
} else {
return LLVMBuildUIToFP(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
}
}
}
case CastOpFloatToInt: {
assert(wanted_type->id == ZigTypeIdInt);
@ -3840,18 +3961,28 @@ static LLVMValueRef ir_render_cast(CodeGen *g, Stage1Air *executable,
bool want_safety = ir_want_runtime_safety(g, &cast_instruction->base);
LLVMValueRef result;
if (wanted_type->data.integral.is_signed) {
result = LLVMBuildFPToSI(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
if ((actual_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) ||
(actual_type == g->builtin_types.entry_f128 && !target_long_double_is_f128(g->zig_target))) {
result = gen_soft_float_to_int_op(g, expr_val, actual_type, wanted_type);
} else {
result = LLVMBuildFPToUI(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
if (wanted_type->data.integral.is_signed) {
result = LLVMBuildFPToSI(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
} else {
result = LLVMBuildFPToUI(g->builder, expr_val, get_llvm_type(g, wanted_type), "");
}
}
if (want_safety) {
LLVMValueRef back_to_float;
if (wanted_type->data.integral.is_signed) {
back_to_float = LLVMBuildSIToFP(g->builder, result, LLVMTypeOf(expr_val), "");
if ((actual_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) ||
(actual_type == g->builtin_types.entry_f128 && !target_long_double_is_f128(g->zig_target))) {
back_to_float = gen_soft_int_to_float_op(g, result, wanted_type, actual_type);
} else {
back_to_float = LLVMBuildUIToFP(g->builder, result, LLVMTypeOf(expr_val), "");
if (wanted_type->data.integral.is_signed) {
back_to_float = LLVMBuildSIToFP(g->builder, result, LLVMTypeOf(expr_val), "");
} else {
back_to_float = LLVMBuildUIToFP(g->builder, result, LLVMTypeOf(expr_val), "");
}
}
LLVMValueRef difference = LLVMBuildFSub(g->builder, expr_val, back_to_float, "");
LLVMValueRef one_pos = LLVMConstReal(LLVMTypeOf(expr_val), 1.0f);
@ -4151,42 +4282,46 @@ static LLVMValueRef ir_render_binary_not(CodeGen *g, Stage1Air *executable,
return LLVMBuildNot(g->builder, operand, "");
}
static LLVMValueRef ir_gen_soft_f80_neg(CodeGen *g, ZigType *op_type, LLVMValueRef operand) {
uint32_t vector_len = op_type->id == ZigTypeIdVector ? op_type->data.vector.len : 0;
static LLVMValueRef gen_soft_float_neg(CodeGen *g, ZigType *operand_type, LLVMValueRef operand) {
uint32_t vector_len = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.len : 0;
uint16_t num_bits = operand_type->data.floating.bit_count;
LLVMTypeRef llvm_i80 = LLVMIntType(80);
LLVMValueRef sign_mask = LLVMConstInt(llvm_i80, 1, false);
sign_mask = LLVMConstShl(sign_mask, LLVMConstInt(llvm_i80, 79, false));
ZigType *iX_type = get_int_type(g, true, num_bits);
LLVMValueRef sign_mask = LLVMConstInt(iX_type->llvm_type, 1, false);
sign_mask = LLVMConstShl(sign_mask, LLVMConstInt(iX_type->llvm_type, num_bits - 1, false));
LLVMValueRef result;
if (vector_len == 0) {
result = LLVMBuildXor(g->builder, operand, sign_mask, "");
} else {
result = build_alloca(g, op_type, "", 0);
}
LLVMValueRef bitcasted_operand = LLVMBuildBitCast(g->builder, operand, iX_type->llvm_type, "");
LLVMValueRef result = LLVMBuildXor(g->builder, bitcasted_operand, sign_mask, "");
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef xor_operand = LLVMBuildExtractElement(g->builder, operand, index_value, "");
LLVMValueRef xor_result = LLVMBuildXor(g->builder, xor_operand, sign_mask, "");
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
xor_result, index_value, "");
return LLVMBuildBitCast(g->builder, result, operand_type->llvm_type, "");
} else {
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
ZigType *iX_vector_type = get_vector_type(g, vector_len, iX_type);
LLVMValueRef result = build_alloca(g, iX_vector_type, "", 0);
LLVMValueRef bitcasted_operand = LLVMBuildBitCast(g->builder, operand, iX_vector_type->llvm_type, "");
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef elem = LLVMBuildExtractElement(g->builder, bitcasted_operand, index_value, "");
LLVMValueRef result_elem = LLVMBuildXor(g->builder, elem, sign_mask, "");
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
result_elem, index_value, "");
}
return LLVMBuildBitCast(g->builder, LLVMBuildLoad(g->builder, result, ""), operand_type->llvm_type, "");
}
if (vector_len != 0) {
result = LLVMBuildLoad(g->builder, result, "");
}
return result;
}
static LLVMValueRef ir_gen_negation(CodeGen *g, Stage1AirInst *inst, Stage1AirInst *operand, bool wrapping) {
static LLVMValueRef gen_negation(CodeGen *g, Stage1AirInst *inst, Stage1AirInst *operand, bool wrapping) {
LLVMValueRef llvm_operand = ir_llvm_value(g, operand);
ZigType *operand_type = operand->value->type;
ZigType *scalar_type = (operand_type->id == ZigTypeIdVector) ?
operand_type->data.vector.elem_type : operand_type;
if (scalar_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target))
return ir_gen_soft_f80_neg(g, operand_type, llvm_operand);
if ((scalar_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) ||
(scalar_type == g->builtin_types.entry_f128 && !target_long_double_is_f128(g->zig_target))) {
return gen_soft_float_neg(g, operand_type, llvm_operand);
}
if (scalar_type->id == ZigTypeIdFloat) {
ZigLLVMSetFastMath(g->builder, ir_want_fast_math(g, inst));
@ -4210,7 +4345,7 @@ static LLVMValueRef ir_gen_negation(CodeGen *g, Stage1AirInst *inst, Stage1AirIn
static LLVMValueRef ir_render_negation(CodeGen *g, Stage1Air *executable,
Stage1AirInstNegation *inst)
{
return ir_gen_negation(g, &inst->base, inst->operand, inst->wrapping);
return gen_negation(g, &inst->base, inst->operand, inst->wrapping);
}
static LLVMValueRef ir_render_bool_not(CodeGen *g, Stage1Air *executable, Stage1AirInstBoolNot *instruction) {
@ -7024,110 +7159,34 @@ static LLVMValueRef ir_render_atomic_store(CodeGen *g, Stage1Air *executable,
return nullptr;
}
static LLVMValueRef ir_render_soft_f80_float_op(CodeGen *g, Stage1Air *executable, Stage1AirInstFloatOp *instruction) {
ZigType *op_type = instruction->operand->value->type;
uint32_t vector_len = op_type->id == ZigTypeIdVector ? op_type->data.vector.len : 0;
const char *func_name;
switch (instruction->fn_id) {
case BuiltinFnIdSqrt:
func_name = "__sqrtx";
break;
case BuiltinFnIdSin:
func_name = "__sinx";
break;
case BuiltinFnIdCos:
func_name = "__cosx";
break;
case BuiltinFnIdExp:
func_name = "__expx";
break;
case BuiltinFnIdExp2:
func_name = "__exp2x";
break;
case BuiltinFnIdLog:
func_name = "__logx";
break;
case BuiltinFnIdLog2:
func_name = "__log2x";
break;
case BuiltinFnIdLog10:
func_name = "__log10x";
break;
case BuiltinFnIdFabs:
func_name = "__fabsx";
break;
case BuiltinFnIdFloor:
func_name = "__floorx";
break;
case BuiltinFnIdCeil:
func_name = "__ceilx";
break;
case BuiltinFnIdTrunc:
func_name = "__truncx";
break;
case BuiltinFnIdNearbyInt:
func_name = "__nearbyintx";
break;
case BuiltinFnIdRound:
func_name = "__roundx";
break;
default:
zig_unreachable();
}
LLVMValueRef func_ref = LLVMGetNamedFunction(g->module, func_name);
if (func_ref == nullptr) {
LLVMTypeRef f80_ref = g->builtin_types.entry_f80->llvm_type;
LLVMTypeRef fn_type = LLVMFunctionType(f80_ref, &f80_ref, 1, false);
func_ref = LLVMAddFunction(g->module, func_name, fn_type);
}
LLVMValueRef operand = ir_llvm_value(g, instruction->operand);
LLVMValueRef result;
if (vector_len == 0) {
result = LLVMBuildCall(g->builder, func_ref, &operand, 1, "");
} else {
result = build_alloca(g, instruction->operand->value->type, "", 0);
}
LLVMTypeRef usize_ref = g->builtin_types.entry_usize->llvm_type;
for (uint32_t i = 0; i < vector_len; i++) {
LLVMValueRef index_value = LLVMConstInt(usize_ref, i, false);
LLVMValueRef param = LLVMBuildExtractElement(g->builder, operand, index_value, "");
LLVMValueRef call_result = LLVMBuildCall(g->builder, func_ref, &param, 1, "");
LLVMBuildInsertElement(g->builder, LLVMBuildLoad(g->builder, result, ""),
call_result, index_value, "");
}
if (vector_len != 0) {
result = LLVMBuildLoad(g->builder, result, "");
}
return result;
}
static LLVMValueRef ir_render_float_op(CodeGen *g, Stage1Air *executable, Stage1AirInstFloatOp *instruction) {
ZigType *op_type = instruction->operand->value->type;
op_type = op_type->id == ZigTypeIdVector ? op_type->data.vector.elem_type : op_type;
if (op_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) {
return ir_render_soft_f80_float_op(g, executable, instruction);
}
LLVMValueRef operand = ir_llvm_value(g, instruction->operand);
LLVMValueRef fn_val = get_float_fn(g, instruction->base.value->type, ZigLLVMFnIdFloatOp, instruction->fn_id);
return LLVMBuildCall(g->builder, fn_val, &operand, 1, "");
ZigType *operand_type = instruction->operand->value->type;
return gen_float_un_op(g, operand, operand_type, instruction->fn_id);
}
static LLVMValueRef ir_render_soft_f80_mul_add(CodeGen *g, Stage1Air *executable, Stage1AirInstMulAdd *instruction) {
ZigType *op_type = instruction->op1->value->type;
uint32_t vector_len = op_type->id == ZigTypeIdVector ? op_type->data.vector.len : 0;
static LLVMValueRef ir_render_soft_mul_add(CodeGen *g, Stage1Air *executable, Stage1AirInstMulAdd *instruction, ZigType *float_type) {
ZigType *operand_type = instruction->op1->value->type;
uint32_t vector_len = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.len : 0;
const char *func_name = "__fmax";
LLVMValueRef func_ref = LLVMGetNamedFunction(g->module, func_name);
const char *fn_name;
if (float_type == g->builtin_types.entry_f32)
fn_name = "fmaf";
else if (float_type == g->builtin_types.entry_f64)
fn_name = "fma";
else if (float_type == g->builtin_types.entry_f80)
fn_name = "__fmax";
else if (float_type == g->builtin_types.entry_f128)
fn_name = "fmaq";
else
zig_unreachable();
LLVMValueRef func_ref = LLVMGetNamedFunction(g->module, fn_name);
if (func_ref == nullptr) {
LLVMTypeRef f80_ref = g->builtin_types.entry_f80->llvm_type;
LLVMTypeRef params[3] = { f80_ref, f80_ref, f80_ref };
LLVMTypeRef fn_type = LLVMFunctionType(f80_ref, params, 3, false);
func_ref = LLVMAddFunction(g->module, func_name, fn_type);
LLVMTypeRef float_type_ref = float_type->llvm_type;
LLVMTypeRef params[3] = { float_type_ref, float_type_ref, float_type_ref };
LLVMTypeRef fn_type = LLVMFunctionType(float_type_ref, params, 3, false);
func_ref = LLVMAddFunction(g->module, fn_name, fn_type);
}
LLVMValueRef op1 = ir_llvm_value(g, instruction->op1);
@ -7161,10 +7220,11 @@ static LLVMValueRef ir_render_soft_f80_mul_add(CodeGen *g, Stage1Air *executable
}
static LLVMValueRef ir_render_mul_add(CodeGen *g, Stage1Air *executable, Stage1AirInstMulAdd *instruction) {
ZigType *op_type = instruction->op1->value->type;
op_type = op_type->id == ZigTypeIdVector ? op_type->data.vector.elem_type : op_type;
if (op_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) {
return ir_render_soft_f80_mul_add(g, executable, instruction);
ZigType *operand_type = instruction->op1->value->type;
operand_type = operand_type->id == ZigTypeIdVector ? operand_type->data.vector.elem_type : operand_type;
if ((operand_type == g->builtin_types.entry_f80 && !target_has_f80(g->zig_target)) ||
(operand_type == g->builtin_types.entry_f128 && !target_long_double_is_f128(g->zig_target))) {
return ir_render_soft_mul_add(g, executable, instruction, operand_type);
}
LLVMValueRef op1 = ir_llvm_value(g, instruction->op1);
LLVMValueRef op2 = ir_llvm_value(g, instruction->op2);

View File

@ -24300,7 +24300,7 @@ static ErrorMsg *ir_eval_float_op(IrAnalyze *ira, Scope *scope, AstNode *source_
case BuiltinFnIdLog2:
return ir_add_error_node(ira, source_node,
buf_sprintf("compiler bug: TODO: implement '%s' for type '%s'. See https://github.com/ziglang/zig/issues/4026",
float_op_to_name(fop), buf_ptr(&float_type->name)));
float_un_op_to_name(fop), buf_ptr(&float_type->name)));
default:
zig_unreachable();
}
@ -24344,7 +24344,7 @@ static ErrorMsg *ir_eval_float_op(IrAnalyze *ira, Scope *scope, AstNode *source_
case BuiltinFnIdLog2:
return ir_add_error_node(ira, source_node,
buf_sprintf("compiler bug: TODO: implement '%s' for type '%s'. See https://github.com/ziglang/zig/issues/4026",
float_op_to_name(fop), buf_ptr(&float_type->name)));
float_un_op_to_name(fop), buf_ptr(&float_type->name)));
default:
zig_unreachable();
}

View File

@ -2558,13 +2558,13 @@ static void ir_print_add_implicit_return_type(IrPrintSrc *irp, Stage1ZirInstAddI
}
static void ir_print_float_op(IrPrintSrc *irp, Stage1ZirInstFloatOp *instruction) {
fprintf(irp->f, "@%s(", float_op_to_name(instruction->fn_id));
fprintf(irp->f, "@%s(", float_un_op_to_name(instruction->fn_id));
ir_print_other_inst_src(irp, instruction->operand);
fprintf(irp->f, ")");
}
static void ir_print_float_op(IrPrintGen *irp, Stage1AirInstFloatOp *instruction) {
fprintf(irp->f, "@%s(", float_op_to_name(instruction->fn_id));
fprintf(irp->f, "@%s(", float_un_op_to_name(instruction->fn_id));
ir_print_other_inst_gen(irp, instruction->operand);
fprintf(irp->f, ")");
}