compiler-rt: math functions reorg

* unify the logic for exporting math functions from compiler-rt,
   with the appropriate suffixes and prefixes.
   - add all missing f128 and f80 exports. Functions with missing
     implementations call other functions and have TODO comments.
   - also add f16 functions
 * move math functions from freestanding libc to compiler-rt (#7265)
 * enable all the f128 and f80 code in the stage2 compiler and behavior
   tests (#11161).
 * update std lib to use builtins rather than `std.math`.
This commit is contained in:
Andrew Kelley 2022-04-26 10:13:55 -07:00
parent 6f4343b61a
commit 41dd2beaac
66 changed files with 2617 additions and 2869 deletions

View File

@ -445,7 +445,6 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/lib/std/math/big.zig"
"${CMAKE_SOURCE_DIR}/lib/std/math/big/int.zig"
"${CMAKE_SOURCE_DIR}/lib/std/math/float.zig"
"${CMAKE_SOURCE_DIR}/lib/std/math/floor.zig"
"${CMAKE_SOURCE_DIR}/lib/std/math/frexp.zig"
"${CMAKE_SOURCE_DIR}/lib/std/math/isinf.zig"
"${CMAKE_SOURCE_DIR}/lib/std/math/isnan.zig"
@ -482,20 +481,40 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/absv.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/addXf3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/addo.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/arm.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/atomics.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/aulldiv.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/aullrem.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/bswap.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/ceil.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/clear_cache.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/cmp.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/compareXf2.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/cos.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/count0bits.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/divdf3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/divsf3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/divtf3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/divti3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/divxf3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/emutls.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/exp.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/exp2.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/extendXfYf2.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/extend_f80.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/fabs.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/fixXfYi.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/floatXiYf.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/floor.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/fma.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/fmax.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/fmin.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/fmod.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/int.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/log.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/log10.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/log2.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/modti3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/mulXf3.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/muldi3.zig"
@ -507,9 +526,22 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/os_version_check.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/parity.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/popcount.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/rem_pio2.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/rem_pio2_large.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/rem_pio2f.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/round.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/shift.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/sin.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/sincos.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/sparc.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/sqrt.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/stack_probe.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/subo.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/tan.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/trig.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/trunc.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/truncXfYf2.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/trunc_f80.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/udivmod.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/udivmodti4.zig"
"${CMAKE_SOURCE_DIR}/lib/std/special/compiler_rt/udivti3.zig"

View File

@ -113,7 +113,7 @@ fn errolSlow(val: f64, buffer: []u8) FloatDecimal {
// normalize the midpoint
const e = math.frexp(val).exponent;
var exp = @floatToInt(i16, math.floor(307 + @intToFloat(f64, e) * 0.30103));
var exp = @floatToInt(i16, @floor(307 + @intToFloat(f64, e) * 0.30103));
if (exp < 20) {
exp = 20;
} else if (@intCast(usize, exp) >= lookup_table.len) {
@ -170,10 +170,10 @@ fn errolSlow(val: f64, buffer: []u8) FloatDecimal {
// digit generation
var buf_index: usize = 0;
while (true) {
var hdig = @floatToInt(u8, math.floor(high.val));
var hdig = @floatToInt(u8, @floor(high.val));
if ((high.val == @intToFloat(f64, hdig)) and (high.off < 0)) hdig -= 1;
var ldig = @floatToInt(u8, math.floor(low.val));
var ldig = @floatToInt(u8, @floor(low.val));
if ((low.val == @intToFloat(f64, ldig)) and (low.off < 0)) ldig -= 1;
if (ldig != hdig) break;
@ -187,7 +187,7 @@ fn errolSlow(val: f64, buffer: []u8) FloatDecimal {
}
const tmp = (high.val + low.val) / 2.0;
var mdig = @floatToInt(u8, math.floor(tmp + 0.5));
var mdig = @floatToInt(u8, @floor(tmp + 0.5));
if ((@intToFloat(f64, mdig) - tmp) == 0.5 and (mdig & 0x1) != 0) mdig -= 1;
buffer[buf_index] = mdig + '0';

View File

@ -138,7 +138,7 @@ pub fn approxEqAbs(comptime T: type, x: T, y: T, tolerance: T) bool {
if (isNan(x) or isNan(y))
return false;
return fabs(x - y) <= tolerance;
return @fabs(x - y) <= tolerance;
}
/// Performs an approximate comparison of two floating point values `x` and `y`.
@ -166,7 +166,7 @@ pub fn approxEqRel(comptime T: type, x: T, y: T, tolerance: T) bool {
if (isNan(x) or isNan(y))
return false;
return fabs(x - y) <= max(fabs(x), fabs(y)) * tolerance;
return @fabs(x - y) <= max(@fabs(x), @fabs(y)) * tolerance;
}
pub fn approxEq(comptime T: type, x: T, y: T, tolerance: T) bool {
@ -233,11 +233,6 @@ pub fn raiseDivByZero() void {
pub const isNan = @import("math/isnan.zig").isNan;
pub const isSignalNan = @import("math/isnan.zig").isSignalNan;
pub const fabs = @import("math/fabs.zig").fabs;
pub const ceil = @import("math/ceil.zig").ceil;
pub const floor = @import("math/floor.zig").floor;
pub const trunc = @import("math/trunc.zig").trunc;
pub const round = @import("math/round.zig").round;
pub const frexp = @import("math/frexp.zig").frexp;
pub const Frexp = @import("math/frexp.zig").Frexp;
pub const modf = @import("math/modf.zig").modf;
@ -261,8 +256,6 @@ pub const asin = @import("math/asin.zig").asin;
pub const atan = @import("math/atan.zig").atan;
pub const atan2 = @import("math/atan2.zig").atan2;
pub const hypot = @import("math/hypot.zig").hypot;
pub const exp = @import("math/exp.zig").exp;
pub const exp2 = @import("math/exp2.zig").exp2;
pub const expm1 = @import("math/expm1.zig").expm1;
pub const ilogb = @import("math/ilogb.zig").ilogb;
pub const ln = @import("math/ln.zig").ln;
@ -270,16 +263,12 @@ pub const log = @import("math/log.zig").log;
pub const log2 = @import("math/log2.zig").log2;
pub const log10 = @import("math/log10.zig").log10;
pub const log1p = @import("math/log1p.zig").log1p;
pub const fma = @import("math/fma.zig").fma;
pub const asinh = @import("math/asinh.zig").asinh;
pub const acosh = @import("math/acosh.zig").acosh;
pub const atanh = @import("math/atanh.zig").atanh;
pub const sinh = @import("math/sinh.zig").sinh;
pub const cosh = @import("math/cosh.zig").cosh;
pub const tanh = @import("math/tanh.zig").tanh;
pub const cos = @import("math/cos.zig").cos;
pub const sin = @import("math/sin.zig").sin;
pub const tan = @import("math/tan.zig").tan;
pub const complex = @import("math/complex.zig");
pub const Complex = complex.Complex;
@ -716,17 +705,6 @@ fn testAbsInt() !void {
try testing.expect((absInt(@as(i32, 10)) catch unreachable) == 10);
}
pub const absFloat = fabs;
test "absFloat" {
try testAbsFloat();
comptime try testAbsFloat();
}
fn testAbsFloat() !void {
try testing.expect(absFloat(@as(f32, -10.05)) == 10.05);
try testing.expect(absFloat(@as(f32, 10.05)) == 10.05);
}
/// Divide numerator by denominator, rounding toward zero. Returns an
/// error on overflow or when denominator is zero.
pub fn divTrunc(comptime T: type, numerator: T, denominator: T) !T {
@ -1400,11 +1378,6 @@ test "order.compare" {
try testing.expect(order(1, 0).compare(.neq));
}
test "comptime sin and ln" {
const v = comptime (sin(@as(f32, 1)) + ln(@as(f32, 5)));
try testing.expect(v == sin(@as(f32, 1)) + ln(@as(f32, 5)));
}
/// Returns a mask of all ones if value is true,
/// and a mask of all zeroes if value is false.
/// Compiles to one instruction for register sized integers.

View File

@ -64,14 +64,14 @@ fn acos32(x: f32) f32 {
// x < -0.5
if (hx >> 31 != 0) {
const z = (1 + x) * 0.5;
const s = math.sqrt(z);
const s = @sqrt(z);
const w = r32(z) * s - pio2_lo;
return 2 * (pio2_hi - (s + w));
}
// x > 0.5
const z = (1.0 - x) * 0.5;
const s = math.sqrt(z);
const s = @sqrt(z);
const jx = @bitCast(u32, s);
const df = @bitCast(f32, jx & 0xFFFFF000);
const c = (z - df * df) / (s + df);
@ -133,14 +133,14 @@ fn acos64(x: f64) f64 {
// x < -0.5
if (hx >> 31 != 0) {
const z = (1.0 + x) * 0.5;
const s = math.sqrt(z);
const s = @sqrt(z);
const w = r64(z) * s - pio2_lo;
return 2 * (pio2_hi - (s + w));
}
// x > 0.5
const z = (1.0 - x) * 0.5;
const s = math.sqrt(z);
const s = @sqrt(z);
const jx = @bitCast(u64, s);
const df = @bitCast(f64, jx & 0xFFFFFFFF00000000);
const c = (z - df * df) / (s + df);

View File

@ -29,15 +29,15 @@ fn acosh32(x: f32) f32 {
// |x| < 2, invalid if x < 1 or nan
if (i < 0x3F800000 + (1 << 23)) {
return math.log1p(x - 1 + math.sqrt((x - 1) * (x - 1) + 2 * (x - 1)));
return math.log1p(x - 1 + @sqrt((x - 1) * (x - 1) + 2 * (x - 1)));
}
// |x| < 0x1p12
else if (i < 0x3F800000 + (12 << 23)) {
return math.ln(2 * x - 1 / (x + math.sqrt(x * x - 1)));
return @log(2 * x - 1 / (x + @sqrt(x * x - 1)));
}
// |x| >= 0x1p12
else {
return math.ln(x) + 0.693147180559945309417232121458176568;
return @log(x) + 0.693147180559945309417232121458176568;
}
}
@ -47,15 +47,15 @@ fn acosh64(x: f64) f64 {
// |x| < 2, invalid if x < 1 or nan
if (e < 0x3FF + 1) {
return math.log1p(x - 1 + math.sqrt((x - 1) * (x - 1) + 2 * (x - 1)));
return math.log1p(x - 1 + @sqrt((x - 1) * (x - 1) + 2 * (x - 1)));
}
// |x| < 0x1p26
else if (e < 0x3FF + 26) {
return math.ln(2 * x - 1 / (x + math.sqrt(x * x - 1)));
return @log(2 * x - 1 / (x + @sqrt(x * x - 1)));
}
// |x| >= 0x1p26 or nan
else {
return math.ln(x) + 0.693147180559945309417232121458176568;
return @log(x) + 0.693147180559945309417232121458176568;
}
}

View File

@ -60,8 +60,8 @@ fn asin32(x: f32) f32 {
}
// 1 > |x| >= 0.5
const z = (1 - math.fabs(x)) * 0.5;
const s = math.sqrt(z);
const z = (1 - @fabs(x)) * 0.5;
const s = @sqrt(z);
const fx = pio2 - 2 * (s + s * r32(z));
if (hx >> 31 != 0) {
@ -119,8 +119,8 @@ fn asin64(x: f64) f64 {
}
// 1 > |x| >= 0.5
const z = (1 - math.fabs(x)) * 0.5;
const s = math.sqrt(z);
const z = (1 - @fabs(x)) * 0.5;
const s = @sqrt(z);
const r = r64(z);
var fx: f64 = undefined;

View File

@ -39,15 +39,15 @@ fn asinh32(x: f32) f32 {
// |x| >= 0x1p12 or inf or nan
if (i >= 0x3F800000 + (12 << 23)) {
rx = math.ln(rx) + 0.69314718055994530941723212145817656;
rx = @log(rx) + 0.69314718055994530941723212145817656;
}
// |x| >= 2
else if (i >= 0x3F800000 + (1 << 23)) {
rx = math.ln(2 * x + 1 / (math.sqrt(x * x + 1) + x));
rx = @log(2 * x + 1 / (@sqrt(x * x + 1) + x));
}
// |x| >= 0x1p-12, up to 1.6ulp error
else if (i >= 0x3F800000 - (12 << 23)) {
rx = math.log1p(x + x * x / (math.sqrt(x * x + 1) + 1));
rx = math.log1p(x + x * x / (@sqrt(x * x + 1) + 1));
}
// |x| < 0x1p-12, inexact if x != 0
else {
@ -70,15 +70,15 @@ fn asinh64(x: f64) f64 {
// |x| >= 0x1p26 or inf or nan
if (e >= 0x3FF + 26) {
rx = math.ln(rx) + 0.693147180559945309417232121458176568;
rx = @log(rx) + 0.693147180559945309417232121458176568;
}
// |x| >= 2
else if (e >= 0x3FF + 1) {
rx = math.ln(2 * x + 1 / (math.sqrt(x * x + 1) + x));
rx = @log(2 * x + 1 / (@sqrt(x * x + 1) + x));
}
// |x| >= 0x1p-12, up to 1.6ulp error
else if (e >= 0x3FF - 26) {
rx = math.log1p(x + x * x / (math.sqrt(x * x + 1) + 1));
rx = math.log1p(x + x * x / (@sqrt(x * x + 1) + 1));
}
// |x| < 0x1p-12, inexact if x != 0
else {

View File

@ -73,7 +73,7 @@ fn atan32(x_: f32) f32 {
}
id = null;
} else {
x = math.fabs(x);
x = @fabs(x);
// |x| < 1.1875
if (ix < 0x3F980000) {
// 7/16 <= |x| < 11/16
@ -171,7 +171,7 @@ fn atan64(x_: f64) f64 {
}
id = null;
} else {
x = math.fabs(x);
x = @fabs(x);
// |x| < 1.1875
if (ix < 0x3FF30000) {
// 7/16 <= |x| < 11/16

View File

@ -108,7 +108,7 @@ fn atan2_32(y: f32, x: f32) f32 {
if ((m & 2) != 0 and iy + (26 << 23) < ix) {
break :z 0.0;
} else {
break :z math.atan(math.fabs(y / x));
break :z math.atan(@fabs(y / x));
}
};
@ -198,7 +198,7 @@ fn atan2_64(y: f64, x: f64) f64 {
if ((m & 2) != 0 and iy +% (64 << 20) < ix) {
break :z 0.0;
} else {
break :z math.atan(math.fabs(y / x));
break :z math.atan(@fabs(y / x));
}
};

View File

@ -115,7 +115,7 @@ pub fn Complex(comptime T: type) type {
/// Returns the magnitude of a complex number.
pub fn magnitude(self: Self) T {
return math.sqrt(self.re * self.re + self.im * self.im);
return @sqrt(self.re * self.re + self.im * self.im);
}
};
}

View File

@ -66,7 +66,7 @@ fn atan32(z: Complex(f32)) Complex(f32) {
t = y + 1.0;
a = (x2 + (t * t)) / a;
return Complex(f32).init(w, 0.25 * math.ln(a));
return Complex(f32).init(w, 0.25 * @log(a));
}
fn redupif64(x: f64) f64 {
@ -115,7 +115,7 @@ fn atan64(z: Complex(f64)) Complex(f64) {
t = y + 1.0;
a = (x2 + (t * t)) / a;
return Complex(f64).init(w, 0.25 * math.ln(a));
return Complex(f64).init(w, 0.25 * @log(a));
}
const epsilon = 0.0001;

View File

@ -44,12 +44,12 @@ fn cosh32(z: Complex(f32)) Complex(f32) {
// |x|>= 9, so cosh(x) ~= exp(|x|)
if (ix < 0x42b17218) {
// x < 88.7: exp(|x|) won't overflow
const h = math.exp(math.fabs(x)) * 0.5;
const h = @exp(@fabs(x)) * 0.5;
return Complex(f32).init(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
}
// x < 192.7: scale to avoid overflow
else if (ix < 0x4340b1e7) {
const v = Complex(f32).init(math.fabs(x), y);
const v = Complex(f32).init(@fabs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f32).init(r.re, r.im * math.copysign(f32, 1, x));
}
@ -112,12 +112,12 @@ fn cosh64(z: Complex(f64)) Complex(f64) {
// |x|>= 22, so cosh(x) ~= exp(|x|)
if (ix < 0x40862e42) {
// x < 710: exp(|x|) won't overflow
const h = math.exp(math.fabs(x)) * 0.5;
const h = @exp(@fabs(x)) * 0.5;
return Complex(f64).init(h * math.cos(y), math.copysign(f64, h, x) * math.sin(y));
}
// x < 1455: scale to avoid overflow
else if (ix < 0x4096bbaa) {
const v = Complex(f64).init(math.fabs(x), y);
const v = Complex(f64).init(@fabs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f64).init(r.re, r.im * math.copysign(f64, 1, x));
}

View File

@ -33,7 +33,7 @@ fn exp32(z: Complex(f32)) Complex(f32) {
const hy = @bitCast(u32, y) & 0x7fffffff;
// cexp(x + i0) = exp(x) + i0
if (hy == 0) {
return Complex(f32).init(math.exp(x), y);
return Complex(f32).init(@exp(x), y);
}
const hx = @bitCast(u32, x);
@ -63,7 +63,7 @@ fn exp32(z: Complex(f32)) Complex(f32) {
// - x = +-inf
// - x = nan
else {
const exp_x = math.exp(x);
const exp_x = @exp(x);
return Complex(f32).init(exp_x * math.cos(y), exp_x * math.sin(y));
}
}
@ -81,7 +81,7 @@ fn exp64(z: Complex(f64)) Complex(f64) {
// cexp(x + i0) = exp(x) + i0
if (hy | ly == 0) {
return Complex(f64).init(math.exp(x), y);
return Complex(f64).init(@exp(x), y);
}
const fx = @bitCast(u64, x);
@ -114,13 +114,13 @@ fn exp64(z: Complex(f64)) Complex(f64) {
// - x = +-inf
// - x = nan
else {
const exp_x = math.exp(x);
const exp_x = @exp(x);
return Complex(f64).init(exp_x * math.cos(y), exp_x * math.sin(y));
}
}
test "complex.cexp32" {
const tolerance_f32 = math.sqrt(math.floatEps(f32));
const tolerance_f32 = @sqrt(math.floatEps(f32));
{
const a = Complex(f32).init(5, 3);
@ -140,7 +140,7 @@ test "complex.cexp32" {
}
test "complex.cexp64" {
const tolerance_f64 = math.sqrt(math.floatEps(f64));
const tolerance_f64 = @sqrt(math.floatEps(f64));
{
const a = Complex(f64).init(5, 3);

View File

@ -26,7 +26,7 @@ fn frexp_exp32(x: f32, expt: *i32) f32 {
const k = 235; // reduction constant
const kln2 = 162.88958740; // k * ln2
const exp_x = math.exp(x - kln2);
const exp_x = @exp(x - kln2);
const hx = @bitCast(u32, exp_x);
// TODO zig should allow this cast implicitly because it should know the value is in range
expt.* = @intCast(i32, hx >> 23) - (0x7f + 127) + k;
@ -54,7 +54,7 @@ fn frexp_exp64(x: f64, expt: *i32) f64 {
const k = 1799; // reduction constant
const kln2 = 1246.97177782734161156; // k * ln2
const exp_x = math.exp(x - kln2);
const exp_x = @exp(x - kln2);
const fx = @bitCast(u64, exp_x);
const hx = @intCast(u32, fx >> 32);

View File

@ -10,7 +10,7 @@ pub fn log(z: anytype) Complex(@TypeOf(z.re)) {
const r = cmath.abs(z);
const phi = cmath.arg(z);
return Complex(T).init(math.ln(r), phi);
return Complex(T).init(@log(r), phi);
}
const epsilon = 0.0001;

View File

@ -44,12 +44,12 @@ fn sinh32(z: Complex(f32)) Complex(f32) {
// |x|>= 9, so cosh(x) ~= exp(|x|)
if (ix < 0x42b17218) {
// x < 88.7: exp(|x|) won't overflow
const h = math.exp(math.fabs(x)) * 0.5;
const h = @exp(@fabs(x)) * 0.5;
return Complex(f32).init(math.copysign(f32, h, x) * math.cos(y), h * math.sin(y));
}
// x < 192.7: scale to avoid overflow
else if (ix < 0x4340b1e7) {
const v = Complex(f32).init(math.fabs(x), y);
const v = Complex(f32).init(@fabs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f32).init(r.re * math.copysign(f32, 1, x), r.im);
}
@ -111,12 +111,12 @@ fn sinh64(z: Complex(f64)) Complex(f64) {
// |x|>= 22, so cosh(x) ~= exp(|x|)
if (ix < 0x40862e42) {
// x < 710: exp(|x|) won't overflow
const h = math.exp(math.fabs(x)) * 0.5;
const h = @exp(@fabs(x)) * 0.5;
return Complex(f64).init(math.copysign(f64, h, x) * math.cos(y), h * math.sin(y));
}
// x < 1455: scale to avoid overflow
else if (ix < 0x4096bbaa) {
const v = Complex(f64).init(math.fabs(x), y);
const v = Complex(f64).init(@fabs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f64).init(r.re * math.copysign(f64, 1, x), r.im);
}

View File

@ -43,7 +43,7 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f32).init(math.fabs(x - y), math.copysign(f32, x, y));
return Complex(f32).init(@fabs(x - y), math.copysign(f32, x, y));
} else {
return Complex(f32).init(x, math.copysign(f32, y - y, y));
}
@ -56,15 +56,15 @@ fn sqrt32(z: Complex(f32)) Complex(f32) {
const dy = @as(f64, y);
if (dx >= 0) {
const t = math.sqrt((dx + math.hypot(f64, dx, dy)) * 0.5);
const t = @sqrt((dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@floatCast(f32, t),
@floatCast(f32, dy / (2.0 * t)),
);
} else {
const t = math.sqrt((-dx + math.hypot(f64, dx, dy)) * 0.5);
const t = @sqrt((-dx + math.hypot(f64, dx, dy)) * 0.5);
return Complex(f32).init(
@floatCast(f32, math.fabs(y) / (2.0 * t)),
@floatCast(f32, @fabs(y) / (2.0 * t)),
@floatCast(f32, math.copysign(f64, t, y)),
);
}
@ -94,7 +94,7 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
// sqrt(-inf + i nan) = nan +- inf i
// sqrt(-inf + iy) = 0 + inf i
if (math.signbit(x)) {
return Complex(f64).init(math.fabs(x - y), math.copysign(f64, x, y));
return Complex(f64).init(@fabs(x - y), math.copysign(f64, x, y));
} else {
return Complex(f64).init(x, math.copysign(f64, y - y, y));
}
@ -104,7 +104,7 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
// scale to avoid overflow
var scale = false;
if (math.fabs(x) >= threshold or math.fabs(y) >= threshold) {
if (@fabs(x) >= threshold or @fabs(y) >= threshold) {
x *= 0.25;
y *= 0.25;
scale = true;
@ -112,11 +112,11 @@ fn sqrt64(z: Complex(f64)) Complex(f64) {
var result: Complex(f64) = undefined;
if (x >= 0) {
const t = math.sqrt((x + math.hypot(f64, x, y)) * 0.5);
const t = @sqrt((x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(t, y / (2.0 * t));
} else {
const t = math.sqrt((-x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(math.fabs(y) / (2.0 * t), math.copysign(f64, t, y));
const t = @sqrt((-x + math.hypot(f64, x, y)) * 0.5);
result = Complex(f64).init(@fabs(y) / (2.0 * t), math.copysign(f64, t, y));
}
if (scale) {

View File

@ -44,7 +44,7 @@ fn tanh32(z: Complex(f32)) Complex(f32) {
// x >= 11
if (ix >= 0x41300000) {
const exp_mx = math.exp(-math.fabs(x));
const exp_mx = @exp(-@fabs(x));
return Complex(f32).init(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
@ -52,7 +52,7 @@ fn tanh32(z: Complex(f32)) Complex(f32) {
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const rho = @sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f32).init((beta * rho * s) / den, t / den);
@ -87,7 +87,7 @@ fn tanh64(z: Complex(f64)) Complex(f64) {
// x >= 22
if (ix >= 0x40360000) {
const exp_mx = math.exp(-math.fabs(x));
const exp_mx = @exp(-@fabs(x));
return Complex(f64).init(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
@ -95,7 +95,7 @@ fn tanh64(z: Complex(f64)) Complex(f64) {
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const rho = @sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f64).init((beta * rho * s) / den, t / den);

View File

@ -45,7 +45,7 @@ fn cosh32(x: f32) f32 {
// |x| < log(FLT_MAX)
if (ux < 0x42B17217) {
const t = math.exp(ax);
const t = @exp(ax);
return 0.5 * (t + 1 / t);
}
@ -77,7 +77,7 @@ fn cosh64(x: f64) f64 {
// |x| < log(DBL_MAX)
if (w < 0x40862E42) {
const t = math.exp(ax);
const t = @exp(ax);
// NOTE: If x > log(0x1p26) then 1/t is not required.
return 0.5 * (t + 1 / t);
}

View File

@ -22,7 +22,7 @@ fn expo2f(x: f32) f32 {
const u = (0x7F + k / 2) << 23;
const scale = @bitCast(f32, u);
return math.exp(x - kln2) * scale * scale;
return @exp(x - kln2) * scale * scale;
}
fn expo2d(x: f64) f64 {
@ -31,5 +31,5 @@ fn expo2d(x: f64) f64 {
const u = (0x3FF + k / 2) << 20;
const scale = @bitCast(f64, @as(u64, u) << 32);
return math.exp(x - kln2) * scale * scale;
return @exp(x - kln2) * scale * scale;
}

View File

@ -1,45 +0,0 @@
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
/// Returns the absolute value of x.
///
/// Special Cases:
/// - fabs(+-inf) = +inf
/// - fabs(nan) = nan
pub fn fabs(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
const TBits = std.meta.Int(.unsigned, @bitSizeOf(T));
if (@typeInfo(T) != .Float) {
@compileError("fabs not implemented for " ++ @typeName(T));
}
const float_bits = @bitCast(TBits, x);
const remove_sign = ~@as(TBits, 0) >> 1;
return @bitCast(T, float_bits & remove_sign);
}
test "math.fabs" {
// TODO add support for c_longdouble here
inline for ([_]type{ f16, f32, f64, f80, f128 }) |T| {
// normals
try expect(fabs(@as(T, 1.0)) == 1.0);
try expect(fabs(@as(T, -1.0)) == 1.0);
try expect(fabs(math.floatMin(T)) == math.floatMin(T));
try expect(fabs(-math.floatMin(T)) == math.floatMin(T));
try expect(fabs(math.floatMax(T)) == math.floatMax(T));
try expect(fabs(-math.floatMax(T)) == math.floatMax(T));
// subnormals
try expect(fabs(@as(T, 0.0)) == 0.0);
try expect(fabs(@as(T, -0.0)) == 0.0);
try expect(fabs(math.floatTrueMin(T)) == math.floatTrueMin(T));
try expect(fabs(-math.floatTrueMin(T)) == math.floatTrueMin(T));
// non-finite numbers
try expect(math.isPositiveInf(fabs(math.inf(T))));
try expect(math.isPositiveInf(fabs(-math.inf(T))));
try expect(math.isNan(fabs(math.nan(T))));
}
}

View File

@ -56,7 +56,7 @@ fn hypot32(x: f32, y: f32) f32 {
yy *= 0x1.0p-90;
}
return z * math.sqrt(@floatCast(f32, @as(f64, x) * x + @as(f64, y) * y));
return z * @sqrt(@floatCast(f32, @as(f64, x) * x + @as(f64, y) * y));
}
fn sq(hi: *f64, lo: *f64, x: f64) void {
@ -117,7 +117,7 @@ fn hypot64(x: f64, y: f64) f64 {
sq(&hx, &lx, x);
sq(&hy, &ly, y);
return z * math.sqrt(ly + lx + hy + hx);
return z * @sqrt(ly + lx + hy + hx);
}
test "math.hypot" {

View File

@ -1,12 +1,6 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/lnf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/ln.c
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
const testing = std.testing;
/// Returns the natural logarithm of x.
///
@ -15,175 +9,26 @@ const expect = std.testing.expect;
/// - ln(0) = -inf
/// - ln(x) = nan if x < 0
/// - ln(nan) = nan
/// TODO remove this in favor of `@log`.
pub fn ln(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
switch (@typeInfo(T)) {
.ComptimeFloat => {
return @as(comptime_float, ln_64(x));
},
.Float => {
return switch (T) {
f32 => ln_32(x),
f64 => ln_64(x),
else => @compileError("ln not implemented for " ++ @typeName(T)),
};
return @as(comptime_float, @log(x));
},
.Float => return @log(x),
.ComptimeInt => {
return @as(comptime_int, math.floor(ln_64(@as(f64, x))));
return @as(comptime_int, @floor(@log(@as(f64, x))));
},
.Int => |IntType| switch (IntType.signedness) {
.signed => @compileError("ln not implemented for signed integers"),
.unsigned => return @as(T, math.floor(ln_64(@as(f64, x)))),
.unsigned => return @as(T, @floor(@log(@as(f64, x)))),
},
else => @compileError("ln not implemented for " ++ @typeName(T)),
}
}
pub fn ln_32(x_: f32) f32 {
const ln2_hi: f32 = 6.9313812256e-01;
const ln2_lo: f32 = 9.0580006145e-06;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var ix = @bitCast(u32, x);
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
const dk = @intToFloat(f32, k);
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
}
pub fn ln_64(x_: f64) f64 {
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, ix) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
const dk = @intToFloat(f64, k);
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
}
test "math.ln" {
try expect(ln(@as(f32, 0.2)) == ln_32(0.2));
try expect(ln(@as(f64, 0.2)) == ln_64(0.2));
}
test "math.ln32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, ln_32(0.2), -1.609438, epsilon));
try expect(math.approxEqAbs(f32, ln_32(0.8923), -0.113953, epsilon));
try expect(math.approxEqAbs(f32, ln_32(1.5), 0.405465, epsilon));
try expect(math.approxEqAbs(f32, ln_32(37.45), 3.623007, epsilon));
try expect(math.approxEqAbs(f32, ln_32(89.123), 4.490017, epsilon));
try expect(math.approxEqAbs(f32, ln_32(123123.234375), 11.720941, epsilon));
}
test "math.ln64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, ln_64(0.2), -1.609438, epsilon));
try expect(math.approxEqAbs(f64, ln_64(0.8923), -0.113953, epsilon));
try expect(math.approxEqAbs(f64, ln_64(1.5), 0.405465, epsilon));
try expect(math.approxEqAbs(f64, ln_64(37.45), 3.623007, epsilon));
try expect(math.approxEqAbs(f64, ln_64(89.123), 4.490017, epsilon));
try expect(math.approxEqAbs(f64, ln_64(123123.234375), 11.720941, epsilon));
}
test "math.ln32.special" {
try expect(math.isPositiveInf(ln_32(math.inf(f32))));
try expect(math.isNegativeInf(ln_32(0.0)));
try expect(math.isNan(ln_32(-1.0)));
try expect(math.isNan(ln_32(math.nan(f32))));
}
test "math.ln64.special" {
try expect(math.isPositiveInf(ln_64(math.inf(f64))));
try expect(math.isNegativeInf(ln_64(0.0)));
try expect(math.isNan(ln_64(-1.0)));
try expect(math.isNan(ln_64(math.nan(f64))));
try testing.expect(ln(@as(f32, 0.2)) == @log(0.2));
try testing.expect(ln(@as(f64, 0.2)) == @log(0.2));
}

View File

@ -15,28 +15,28 @@ pub fn log(comptime T: type, base: T, x: T) T {
} else if (base == 10) {
return math.log10(x);
} else if ((@typeInfo(T) == .Float or @typeInfo(T) == .ComptimeFloat) and base == math.e) {
return math.ln(x);
return @log(x);
}
const float_base = math.lossyCast(f64, base);
switch (@typeInfo(T)) {
.ComptimeFloat => {
return @as(comptime_float, math.ln(@as(f64, x)) / math.ln(float_base));
return @as(comptime_float, @log(@as(f64, x)) / @log(float_base));
},
.ComptimeInt => {
return @as(comptime_int, math.floor(math.ln(@as(f64, x)) / math.ln(float_base)));
return @as(comptime_int, @floor(@log(@as(f64, x)) / @log(float_base)));
},
// TODO implement integer log without using float math
.Int => |IntType| switch (IntType.signedness) {
.signed => @compileError("log not implemented for signed integers"),
.unsigned => return @floatToInt(T, math.floor(math.ln(@intToFloat(f64, x)) / math.ln(float_base))),
.unsigned => return @floatToInt(T, @floor(@log(@intToFloat(f64, x)) / @log(float_base))),
},
.Float => {
switch (T) {
f32 => return @floatCast(f32, math.ln(@as(f64, x)) / math.ln(float_base)),
f64 => return math.ln(x) / math.ln(float_base),
f32 => return @floatCast(f32, @log(@as(f64, x)) / @log(float_base)),
f64 => return @log(x) / @log(float_base),
else => @compileError("log not implemented for " ++ @typeName(T)),
}
},

View File

@ -1,9 +1,3 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10.c
const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
@ -20,198 +14,16 @@ pub fn log10(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
switch (@typeInfo(T)) {
.ComptimeFloat => {
return @as(comptime_float, log10_64(x));
},
.Float => {
return switch (T) {
f32 => log10_32(x),
f64 => log10_64(x),
else => @compileError("log10 not implemented for " ++ @typeName(T)),
};
return @as(comptime_float, @log10(x));
},
.Float => return @log10(x),
.ComptimeInt => {
return @as(comptime_int, math.floor(log10_64(@as(f64, x))));
return @as(comptime_int, @floor(@log10(@as(f64, x))));
},
.Int => |IntType| switch (IntType.signedness) {
.signed => @compileError("log10 not implemented for signed integers"),
.unsigned => return @floatToInt(T, math.floor(log10_64(@intToFloat(f64, x)))),
.unsigned => return @floatToInt(T, @floor(@log10(@intToFloat(f64, x)))),
},
else => @compileError("log10 not implemented for " ++ @typeName(T)),
}
}
pub fn log10_32(x_: f32) f32 {
const ivln10hi: f32 = 4.3432617188e-01;
const ivln10lo: f32 = -3.1689971365e-05;
const log10_2hi: f32 = 3.0102920532e-01;
const log10_2lo: f32 = 7.9034151668e-07;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
const dk = @intToFloat(f32, k);
return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
}
pub fn log10_64(x_: f64) f64 {
const ivln10hi: f64 = 4.34294481878168880939e-01;
const ivln10lo: f64 = 2.50829467116452752298e-11;
const log10_2hi: f64 = 3.01029995663611771306e-01;
const log10_2lo: f64 = 3.69423907715893078616e-13;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
// val_hi + val_lo ~ log10(1 + f) + k * log10(2)
var val_hi = hi * ivln10hi;
const dk = @intToFloat(f64, k);
const y = dk * log10_2hi;
var val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
// Extra precision multiplication
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
test "math.log10" {
try testing.expect(log10(@as(f32, 0.2)) == log10_32(0.2));
try testing.expect(log10(@as(f64, 0.2)) == log10_64(0.2));
}
test "math.log10_32" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f32, log10_32(0.2), -0.698970, epsilon));
try testing.expect(math.approxEqAbs(f32, log10_32(0.8923), -0.049489, epsilon));
try testing.expect(math.approxEqAbs(f32, log10_32(1.5), 0.176091, epsilon));
try testing.expect(math.approxEqAbs(f32, log10_32(37.45), 1.573452, epsilon));
try testing.expect(math.approxEqAbs(f32, log10_32(89.123), 1.94999, epsilon));
try testing.expect(math.approxEqAbs(f32, log10_32(123123.234375), 5.09034, epsilon));
}
test "math.log10_64" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f64, log10_64(0.2), -0.698970, epsilon));
try testing.expect(math.approxEqAbs(f64, log10_64(0.8923), -0.049489, epsilon));
try testing.expect(math.approxEqAbs(f64, log10_64(1.5), 0.176091, epsilon));
try testing.expect(math.approxEqAbs(f64, log10_64(37.45), 1.573452, epsilon));
try testing.expect(math.approxEqAbs(f64, log10_64(89.123), 1.94999, epsilon));
try testing.expect(math.approxEqAbs(f64, log10_64(123123.234375), 5.09034, epsilon));
}
test "math.log10_32.special" {
try testing.expect(math.isPositiveInf(log10_32(math.inf(f32))));
try testing.expect(math.isNegativeInf(log10_32(0.0)));
try testing.expect(math.isNan(log10_32(-1.0)));
try testing.expect(math.isNan(log10_32(math.nan(f32))));
}
test "math.log10_64.special" {
try testing.expect(math.isPositiveInf(log10_64(math.inf(f64))));
try testing.expect(math.isNegativeInf(log10_64(0.0)));
try testing.expect(math.isNan(log10_64(-1.0)));
try testing.expect(math.isNan(log10_64(math.nan(f64))));
}

View File

@ -1,13 +1,6 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
const maxInt = std.math.maxInt;
/// Returns the base-2 logarithm of x.
///
@ -20,15 +13,9 @@ pub fn log2(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
switch (@typeInfo(T)) {
.ComptimeFloat => {
return @as(comptime_float, log2_64(x));
},
.Float => {
return switch (T) {
f32 => log2_32(x),
f64 => log2_64(x),
else => @compileError("log2 not implemented for " ++ @typeName(T)),
};
return @as(comptime_float, @log2(x));
},
.Float => return @log2(x),
.ComptimeInt => comptime {
var result = 0;
var x_shifted = x;
@ -46,168 +33,7 @@ pub fn log2(x: anytype) @TypeOf(x) {
}
}
pub fn log2_32(x_: f32) f32 {
const ivln2hi: f32 = 1.4428710938e+00;
const ivln2lo: f32 = -1.7605285393e-04;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k);
}
pub fn log2_64(x_: f64) f64 {
const ivln2hi: f64 = 1.44269504072144627571e+00;
const ivln2lo: f64 = 1.67517131648865118353e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
var val_hi = hi * ivln2hi;
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
// spadd(val_hi, val_lo, y)
const y = @intToFloat(f64, k);
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
test "math.log2" {
try expect(log2(@as(f32, 0.2)) == log2_32(0.2));
try expect(log2(@as(f64, 0.2)) == log2_64(0.2));
}
test "math.log2_32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, log2_32(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f32, log2_32(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f32, log2_32(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f32, log2_32(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f32, log2_32(123123.234375), 16.909744, epsilon));
}
test "math.log2_64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, log2_64(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f64, log2_64(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f64, log2_64(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f64, log2_64(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f64, log2_64(123123.234375), 16.909744, epsilon));
}
test "math.log2_32.special" {
try expect(math.isPositiveInf(log2_32(math.inf(f32))));
try expect(math.isNegativeInf(log2_32(0.0)));
try expect(math.isNan(log2_32(-1.0)));
try expect(math.isNan(log2_32(math.nan(f32))));
}
test "math.log2_64.special" {
try expect(math.isPositiveInf(log2_64(math.inf(f64))));
try expect(math.isNegativeInf(log2_64(0.0)));
try expect(math.isNan(log2_64(-1.0)));
try expect(math.isNan(log2_64(math.nan(f64))));
test "log2" {
try expect(log2(@as(f32, 0.2)) == @log2(0.2));
try expect(log2(@as(f64, 0.2)) == @log2(0.2));
}

View File

@ -2,13 +2,13 @@ const math = @import("../math.zig");
/// Returns the nan representation for type T.
pub fn nan(comptime T: type) T {
return switch (T) {
f16 => math.nan_f16,
f32 => math.nan_f32,
f64 => math.nan_f64,
f80 => math.nan_f80,
f128 => math.nan_f128,
else => @compileError("nan not implemented for " ++ @typeName(T)),
return switch (@typeInfo(T).Float.bits) {
16 => math.nan_f16,
32 => math.nan_f32,
64 => math.nan_f64,
80 => math.nan_f80,
128 => math.nan_f128,
else => @compileError("unreachable"),
};
}
@ -16,12 +16,12 @@ pub fn nan(comptime T: type) T {
pub fn snan(comptime T: type) T {
// Note: A signalling nan is identical to a standard right now by may have a different bit
// representation in the future when required.
return switch (T) {
f16 => @bitCast(f16, math.nan_u16),
f32 => @bitCast(f32, math.nan_u32),
f64 => @bitCast(f64, math.nan_u64),
f80 => @bitCast(f80, math.nan_u80),
f128 => @bitCast(f128, math.nan_u128),
else => @compileError("snan not implemented for " ++ @typeName(T)),
return switch (@typeInfo(T).Float.bits) {
16 => math.nan_u16,
32 => math.nan_u32,
64 => math.nan_u64,
80 => math.nan_u80,
128 => math.nan_u128,
else => @compileError("unreachable"),
};
}

View File

@ -82,7 +82,7 @@ pub fn pow(comptime T: type, x: T, y: T) T {
}
// pow(x, +inf) = +0 for |x| < 1
// pow(x, -inf) = +0 for |x| > 1
else if ((math.fabs(x) < 1) == math.isPositiveInf(y)) {
else if ((@fabs(x) < 1) == math.isPositiveInf(y)) {
return 0;
}
// pow(x, -inf) = +inf for |x| < 1
@ -108,14 +108,14 @@ pub fn pow(comptime T: type, x: T, y: T) T {
// special case sqrt
if (y == 0.5) {
return math.sqrt(x);
return @sqrt(x);
}
if (y == -0.5) {
return 1 / math.sqrt(x);
return 1 / @sqrt(x);
}
const r1 = math.modf(math.fabs(y));
const r1 = math.modf(@fabs(y));
var yi = r1.ipart;
var yf = r1.fpart;
@ -123,7 +123,7 @@ pub fn pow(comptime T: type, x: T, y: T) T {
return math.nan(T);
}
if (yi >= 1 << (@typeInfo(T).Float.bits - 1)) {
return math.exp(y * math.ln(x));
return @exp(y * @log(x));
}
// a = a1 * 2^ae
@ -136,7 +136,7 @@ pub fn pow(comptime T: type, x: T, y: T) T {
yf -= 1;
yi += 1;
}
a1 = math.exp(yf * math.ln(x));
a1 = @exp(yf * @log(x));
}
// a *= x^yi

View File

@ -1,185 +0,0 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/roundf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/round.c
const expect = std.testing.expect;
const std = @import("../std.zig");
const math = std.math;
/// Returns x rounded to the nearest integer, rounding half away from zero.
///
/// Special Cases:
/// - round(+-0) = +-0
/// - round(+-inf) = +-inf
/// - round(nan) = nan
pub fn round(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => round32(x),
f64 => round64(x),
f128 => round128(x),
// TODO this is not correct for some targets
c_longdouble => @floatCast(c_longdouble, round128(x)),
else => @compileError("round not implemented for " ++ @typeName(T)),
};
}
fn round32(x_: f32) f32 {
const f32_toint = 1.0 / math.floatEps(f32);
var x = x_;
const u = @bitCast(u32, x);
const e = (u >> 23) & 0xFF;
var y: f32 = undefined;
if (e >= 0x7F + 23) {
return x;
}
if (u >> 31 != 0) {
x = -x;
}
if (e < 0x7F - 1) {
math.doNotOptimizeAway(x + f32_toint);
return 0 * @bitCast(f32, u);
}
y = x + f32_toint - f32_toint - x;
if (y > 0.5) {
y = y + x - 1;
} else if (y <= -0.5) {
y = y + x + 1;
} else {
y = y + x;
}
if (u >> 31 != 0) {
return -y;
} else {
return y;
}
}
fn round64(x_: f64) f64 {
const f64_toint = 1.0 / math.floatEps(f64);
var x = x_;
const u = @bitCast(u64, x);
const e = (u >> 52) & 0x7FF;
var y: f64 = undefined;
if (e >= 0x3FF + 52) {
return x;
}
if (u >> 63 != 0) {
x = -x;
}
if (e < 0x3ff - 1) {
math.doNotOptimizeAway(x + f64_toint);
return 0 * @bitCast(f64, u);
}
y = x + f64_toint - f64_toint - x;
if (y > 0.5) {
y = y + x - 1;
} else if (y <= -0.5) {
y = y + x + 1;
} else {
y = y + x;
}
if (u >> 63 != 0) {
return -y;
} else {
return y;
}
}
fn round128(x_: f128) f128 {
const f128_toint = 1.0 / math.floatEps(f128);
var x = x_;
const u = @bitCast(u128, x);
const e = (u >> 112) & 0x7FFF;
var y: f128 = undefined;
if (e >= 0x3FFF + 112) {
return x;
}
if (u >> 127 != 0) {
x = -x;
}
if (e < 0x3FFF - 1) {
math.doNotOptimizeAway(x + f128_toint);
return 0 * @bitCast(f128, u);
}
y = x + f128_toint - f128_toint - x;
if (y > 0.5) {
y = y + x - 1;
} else if (y <= -0.5) {
y = y + x + 1;
} else {
y = y + x;
}
if (u >> 127 != 0) {
return -y;
} else {
return y;
}
}
test "math.round" {
try expect(round(@as(f32, 1.3)) == round32(1.3));
try expect(round(@as(f64, 1.3)) == round64(1.3));
try expect(round(@as(f128, 1.3)) == round128(1.3));
}
test "math.round32" {
try expect(round32(1.3) == 1.0);
try expect(round32(-1.3) == -1.0);
try expect(round32(0.2) == 0.0);
try expect(round32(1.8) == 2.0);
}
test "math.round64" {
try expect(round64(1.3) == 1.0);
try expect(round64(-1.3) == -1.0);
try expect(round64(0.2) == 0.0);
try expect(round64(1.8) == 2.0);
}
test "math.round128" {
try expect(round128(1.3) == 1.0);
try expect(round128(-1.3) == -1.0);
try expect(round128(0.2) == 0.0);
try expect(round128(1.8) == 2.0);
}
test "math.round32.special" {
try expect(round32(0.0) == 0.0);
try expect(round32(-0.0) == -0.0);
try expect(math.isPositiveInf(round32(math.inf(f32))));
try expect(math.isNegativeInf(round32(-math.inf(f32))));
try expect(math.isNan(round32(math.nan(f32))));
}
test "math.round64.special" {
try expect(round64(0.0) == 0.0);
try expect(round64(-0.0) == -0.0);
try expect(math.isPositiveInf(round64(math.inf(f64))));
try expect(math.isNegativeInf(round64(-math.inf(f64))));
try expect(math.isNan(round64(math.nan(f64))));
}
test "math.round128.special" {
try expect(round128(0.0) == 0.0);
try expect(round128(-0.0) == -0.0);
try expect(math.isPositiveInf(round128(math.inf(f128))));
try expect(math.isNegativeInf(round128(-math.inf(f128))));
try expect(math.isNan(round128(math.nan(f128))));
}

View File

@ -1,141 +0,0 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/truncf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/trunc.c
const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;
const maxInt = std.math.maxInt;
/// Returns the integer value of x.
///
/// Special Cases:
/// - trunc(+-0) = +-0
/// - trunc(+-inf) = +-inf
/// - trunc(nan) = nan
pub fn trunc(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => trunc32(x),
f64 => trunc64(x),
f128 => trunc128(x),
// TODO this is not correct for some targets
c_longdouble => @floatCast(c_longdouble, trunc128(x)),
else => @compileError("trunc not implemented for " ++ @typeName(T)),
};
}
fn trunc32(x: f32) f32 {
const u = @bitCast(u32, x);
var e = @intCast(i32, ((u >> 23) & 0xFF)) - 0x7F + 9;
var m: u32 = undefined;
if (e >= 23 + 9) {
return x;
}
if (e < 9) {
e = 1;
}
m = @as(u32, maxInt(u32)) >> @intCast(u5, e);
if (u & m == 0) {
return x;
} else {
math.doNotOptimizeAway(x + 0x1p120);
return @bitCast(f32, u & ~m);
}
}
fn trunc64(x: f64) f64 {
const u = @bitCast(u64, x);
var e = @intCast(i32, ((u >> 52) & 0x7FF)) - 0x3FF + 12;
var m: u64 = undefined;
if (e >= 52 + 12) {
return x;
}
if (e < 12) {
e = 1;
}
m = @as(u64, maxInt(u64)) >> @intCast(u6, e);
if (u & m == 0) {
return x;
} else {
math.doNotOptimizeAway(x + 0x1p120);
return @bitCast(f64, u & ~m);
}
}
fn trunc128(x: f128) f128 {
const u = @bitCast(u128, x);
var e = @intCast(i32, ((u >> 112) & 0x7FFF)) - 0x3FFF + 16;
var m: u128 = undefined;
if (e >= 112 + 16) {
return x;
}
if (e < 16) {
e = 1;
}
m = @as(u128, maxInt(u128)) >> @intCast(u7, e);
if (u & m == 0) {
return x;
} else {
math.doNotOptimizeAway(x + 0x1p120);
return @bitCast(f128, u & ~m);
}
}
test "math.trunc" {
try expect(trunc(@as(f32, 1.3)) == trunc32(1.3));
try expect(trunc(@as(f64, 1.3)) == trunc64(1.3));
try expect(trunc(@as(f128, 1.3)) == trunc128(1.3));
}
test "math.trunc32" {
try expect(trunc32(1.3) == 1.0);
try expect(trunc32(-1.3) == -1.0);
try expect(trunc32(0.2) == 0.0);
}
test "math.trunc64" {
try expect(trunc64(1.3) == 1.0);
try expect(trunc64(-1.3) == -1.0);
try expect(trunc64(0.2) == 0.0);
}
test "math.trunc128" {
try expect(trunc128(1.3) == 1.0);
try expect(trunc128(-1.3) == -1.0);
try expect(trunc128(0.2) == 0.0);
}
test "math.trunc32.special" {
try expect(trunc32(0.0) == 0.0); // 0x3F800000
try expect(trunc32(-0.0) == -0.0);
try expect(math.isPositiveInf(trunc32(math.inf(f32))));
try expect(math.isNegativeInf(trunc32(-math.inf(f32))));
try expect(math.isNan(trunc32(math.nan(f32))));
}
test "math.trunc64.special" {
try expect(trunc64(0.0) == 0.0);
try expect(trunc64(-0.0) == -0.0);
try expect(math.isPositiveInf(trunc64(math.inf(f64))));
try expect(math.isNegativeInf(trunc64(-math.inf(f64))));
try expect(math.isNan(trunc64(math.nan(f64))));
}
test "math.trunc128.special" {
try expect(trunc128(0.0) == 0.0);
try expect(trunc128(-0.0) == -0.0);
try expect(math.isPositiveInf(trunc128(math.inf(f128))));
try expect(math.isNegativeInf(trunc128(-math.inf(f128))));
try expect(math.isNan(trunc128(math.nan(f128))));
}

View File

@ -33,7 +33,7 @@ pub fn next_f64(random: Random, comptime tables: ZigTable) f64 {
};
const x = u * tables.x[i];
const test_x = if (tables.is_symmetric) math.fabs(x) else x;
const test_x = if (tables.is_symmetric) @fabs(x) else x;
// equivalent to |u| < tables.x[i+1] / tables.x[i] (or u < tables.x[i+1] / tables.x[i])
if (test_x < tables.x[i + 1]) {
@ -106,18 +106,18 @@ const norm_r = 3.6541528853610088;
const norm_v = 0.00492867323399;
fn norm_f(x: f64) f64 {
return math.exp(-x * x / 2.0);
return @exp(-x * x / 2.0);
}
fn norm_f_inv(y: f64) f64 {
return math.sqrt(-2.0 * math.ln(y));
return @sqrt(-2.0 * @log(y));
}
fn norm_zero_case(random: Random, u: f64) f64 {
var x: f64 = 1;
var y: f64 = 0;
while (-2.0 * y < x * x) {
x = math.ln(random.float(f64)) / norm_r;
y = math.ln(random.float(f64));
x = @log(random.float(f64)) / norm_r;
y = @log(random.float(f64));
}
if (u < 0) {
@ -151,13 +151,13 @@ const exp_r = 7.69711747013104972;
const exp_v = 0.0039496598225815571993;
fn exp_f(x: f64) f64 {
return math.exp(-x);
return @exp(-x);
}
fn exp_f_inv(y: f64) f64 {
return -math.ln(y);
return -@log(y);
}
fn exp_zero_case(random: Random, _: f64) f64 {
return exp_r - math.ln(random.float(f64));
return exp_r - @log(random.float(f64));
}
test "exp dist sanity" {

View File

@ -12,7 +12,6 @@ const maxInt = std.math.maxInt;
const native_os = builtin.os.tag;
const native_arch = builtin.cpu.arch;
const native_abi = builtin.abi;
const long_double_is_f128 = builtin.target.longDoubleIs(f128);
const is_wasm = switch (native_arch) {
.wasm32, .wasm64 => true,
@ -55,53 +54,6 @@ comptime {
} else if (is_msvc) {
@export(_fltused, .{ .name = "_fltused", .linkage = .Strong });
}
@export(trunc, .{ .name = "trunc", .linkage = .Strong });
@export(truncf, .{ .name = "truncf", .linkage = .Strong });
@export(truncl, .{ .name = "truncl", .linkage = .Strong });
@export(log, .{ .name = "log", .linkage = .Strong });
@export(logf, .{ .name = "logf", .linkage = .Strong });
@export(sin, .{ .name = "sin", .linkage = .Strong });
@export(sinf, .{ .name = "sinf", .linkage = .Strong });
@export(cos, .{ .name = "cos", .linkage = .Strong });
@export(cosf, .{ .name = "cosf", .linkage = .Strong });
@export(exp, .{ .name = "exp", .linkage = .Strong });
@export(expf, .{ .name = "expf", .linkage = .Strong });
@export(exp2, .{ .name = "exp2", .linkage = .Strong });
@export(exp2f, .{ .name = "exp2f", .linkage = .Strong });
@export(log2, .{ .name = "log2", .linkage = .Strong });
@export(log2f, .{ .name = "log2f", .linkage = .Strong });
@export(log10, .{ .name = "log10", .linkage = .Strong });
@export(log10f, .{ .name = "log10f", .linkage = .Strong });
@export(fmod, .{ .name = "fmod", .linkage = .Strong });
@export(fmodf, .{ .name = "fmodf", .linkage = .Strong });
@export(sincos, .{ .name = "sincos", .linkage = .Strong });
@export(sincosf, .{ .name = "sincosf", .linkage = .Strong });
@export(fabs, .{ .name = "fabs", .linkage = .Strong });
@export(fabsf, .{ .name = "fabsf", .linkage = .Strong });
@export(round, .{ .name = "round", .linkage = .Strong });
@export(roundf, .{ .name = "roundf", .linkage = .Strong });
@export(roundl, .{ .name = "roundl", .linkage = .Strong });
@export(fmin, .{ .name = "fmin", .linkage = .Strong });
@export(fminf, .{ .name = "fminf", .linkage = .Strong });
@export(fmax, .{ .name = "fmax", .linkage = .Strong });
@export(fmaxf, .{ .name = "fmaxf", .linkage = .Strong });
@export(sqrt, .{ .name = "sqrt", .linkage = .Strong });
@export(sqrtf, .{ .name = "sqrtf", .linkage = .Strong });
}
// Avoid dragging in the runtime safety mechanisms into this .o file,
@ -352,549 +304,6 @@ test "strncmp" {
try std.testing.expect(strncmp("\xff", "\x02", 1) == 253);
}
fn trunc(a: f64) callconv(.C) f64 {
return math.trunc(a);
}
fn truncf(a: f32) callconv(.C) f32 {
return math.trunc(a);
}
fn truncl(a: c_longdouble) callconv(.C) c_longdouble {
if (!long_double_is_f128) {
@panic("TODO implement this");
}
return math.trunc(a);
}
fn log(a: f64) callconv(.C) f64 {
return math.ln(a);
}
fn logf(a: f32) callconv(.C) f32 {
return math.ln(a);
}
fn sin(a: f64) callconv(.C) f64 {
return math.sin(a);
}
fn sinf(a: f32) callconv(.C) f32 {
return math.sin(a);
}
fn cos(a: f64) callconv(.C) f64 {
return math.cos(a);
}
fn cosf(a: f32) callconv(.C) f32 {
return math.cos(a);
}
fn exp(a: f64) callconv(.C) f64 {
return math.exp(a);
}
fn expf(a: f32) callconv(.C) f32 {
return math.exp(a);
}
fn exp2(a: f64) callconv(.C) f64 {
return math.exp2(a);
}
fn exp2f(a: f32) callconv(.C) f32 {
return math.exp2(a);
}
fn log2(a: f64) callconv(.C) f64 {
return math.log2(a);
}
fn log2f(a: f32) callconv(.C) f32 {
return math.log2(a);
}
fn log10(a: f64) callconv(.C) f64 {
return math.log10(a);
}
fn log10f(a: f32) callconv(.C) f32 {
return math.log10(a);
}
fn fmodf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmod(f32, x, y);
}
fn fmod(x: f64, y: f64) callconv(.C) f64 {
return generic_fmod(f64, x, y);
}
fn generic_fmod(comptime T: type, x: T, y: T) T {
@setRuntimeSafety(false);
const bits = @typeInfo(T).Float.bits;
const uint = std.meta.Int(.unsigned, bits);
const log2uint = math.Log2Int(uint);
const digits = if (T == f32) 23 else 52;
const exp_bits = if (T == f32) 9 else 12;
const bits_minus_1 = bits - 1;
const mask = if (T == f32) 0xff else 0x7ff;
var ux = @bitCast(uint, x);
var uy = @bitCast(uint, y);
var ex = @intCast(i32, (ux >> digits) & mask);
var ey = @intCast(i32, (uy >> digits) & mask);
const sx = if (T == f32) @intCast(u32, ux & 0x80000000) else @intCast(i32, ux >> bits_minus_1);
var i: uint = undefined;
if (uy << 1 == 0 or isNan(@bitCast(T, uy)) or ex == mask)
return (x * y) / (x * y);
if (ux << 1 <= uy << 1) {
if (ux << 1 == uy << 1)
return 0 * x;
return x;
}
// normalize x and y
if (ex == 0) {
i = ux << exp_bits;
while (i >> bits_minus_1 == 0) : ({
ex -= 1;
i <<= 1;
}) {}
ux <<= @intCast(log2uint, @bitCast(u32, -ex + 1));
} else {
ux &= maxInt(uint) >> exp_bits;
ux |= 1 << digits;
}
if (ey == 0) {
i = uy << exp_bits;
while (i >> bits_minus_1 == 0) : ({
ey -= 1;
i <<= 1;
}) {}
uy <<= @intCast(log2uint, @bitCast(u32, -ey + 1));
} else {
uy &= maxInt(uint) >> exp_bits;
uy |= 1 << digits;
}
// x mod y
while (ex > ey) : (ex -= 1) {
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
ux <<= 1;
}
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
while (ux >> digits == 0) : ({
ux <<= 1;
ex -= 1;
}) {}
// scale result up
if (ex > 0) {
ux -%= 1 << digits;
ux |= @as(uint, @bitCast(u32, ex)) << digits;
} else {
ux >>= @intCast(log2uint, @bitCast(u32, -ex + 1));
}
if (T == f32) {
ux |= sx;
} else {
ux |= @intCast(uint, sx) << bits_minus_1;
}
return @bitCast(T, ux);
}
test "fmod, fmodf" {
inline for ([_]type{ f32, f64 }) |T| {
const nan_val = math.nan(T);
const inf_val = math.inf(T);
try std.testing.expect(isNan(generic_fmod(T, nan_val, 1.0)));
try std.testing.expect(isNan(generic_fmod(T, 1.0, nan_val)));
try std.testing.expect(isNan(generic_fmod(T, inf_val, 1.0)));
try std.testing.expect(isNan(generic_fmod(T, 0.0, 0.0)));
try std.testing.expect(isNan(generic_fmod(T, 1.0, 0.0)));
try std.testing.expectEqual(@as(T, 0.0), generic_fmod(T, 0.0, 2.0));
try std.testing.expectEqual(@as(T, -0.0), generic_fmod(T, -0.0, 2.0));
try std.testing.expectEqual(@as(T, -2.0), generic_fmod(T, -32.0, 10.0));
try std.testing.expectEqual(@as(T, -2.0), generic_fmod(T, -32.0, -10.0));
try std.testing.expectEqual(@as(T, 2.0), generic_fmod(T, 32.0, 10.0));
try std.testing.expectEqual(@as(T, 2.0), generic_fmod(T, 32.0, -10.0));
}
}
fn sincos(a: f64, r_sin: *f64, r_cos: *f64) callconv(.C) void {
r_sin.* = math.sin(a);
r_cos.* = math.cos(a);
}
fn sincosf(a: f32, r_sin: *f32, r_cos: *f32) callconv(.C) void {
r_sin.* = math.sin(a);
r_cos.* = math.cos(a);
}
fn fabs(a: f64) callconv(.C) f64 {
return math.fabs(a);
}
fn fabsf(a: f32) callconv(.C) f32 {
return math.fabs(a);
}
fn roundf(a: f32) callconv(.C) f32 {
return math.round(a);
}
fn round(a: f64) callconv(.C) f64 {
return math.round(a);
}
fn roundl(a: c_longdouble) callconv(.C) c_longdouble {
if (!long_double_is_f128) {
@panic("TODO implement this");
}
return math.round(a);
}
fn fminf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmin(f32, x, y);
}
fn fmin(x: f64, y: f64) callconv(.C) f64 {
return generic_fmin(f64, x, y);
}
fn generic_fmin(comptime T: type, x: T, y: T) T {
if (isNan(x))
return y;
if (isNan(y))
return x;
return if (x < y) x else y;
}
test "fmin, fminf" {
inline for ([_]type{ f32, f64 }) |T| {
const nan_val = math.nan(T);
try std.testing.expect(isNan(generic_fmin(T, nan_val, nan_val)));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, nan_val, 1.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, 1.0, nan_val));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, 1.0, 10.0));
try std.testing.expectEqual(@as(T, -1.0), generic_fmin(T, 1.0, -1.0));
}
}
fn fmaxf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmax(f32, x, y);
}
fn fmax(x: f64, y: f64) callconv(.C) f64 {
return generic_fmax(f64, x, y);
}
fn generic_fmax(comptime T: type, x: T, y: T) T {
if (isNan(x))
return y;
if (isNan(y))
return x;
return if (x < y) y else x;
}
test "fmax, fmaxf" {
inline for ([_]type{ f32, f64 }) |T| {
const nan_val = math.nan(T);
try std.testing.expect(isNan(generic_fmax(T, nan_val, nan_val)));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, nan_val, 1.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, 1.0, nan_val));
try std.testing.expectEqual(@as(T, 10.0), generic_fmax(T, 1.0, 10.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, 1.0, -1.0));
}
}
// NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound
// behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are
// potentially some edge cases remaining that are not handled in the same way.
fn sqrt(x: f64) callconv(.C) f64 {
const tiny: f64 = 1.0e-300;
const sign: u32 = 0x80000000;
const u = @bitCast(u64, x);
var ix0 = @intCast(u32, u >> 32);
var ix1 = @intCast(u32, u & 0xFFFFFFFF);
// sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan
if (ix0 & 0x7FF00000 == 0x7FF00000) {
return x * x + x;
}
// sqrt(+-0) = +-0
if (x == 0.0) {
return x;
}
// sqrt(-ve) = snan
if (ix0 & sign != 0) {
return math.snan(f64);
}
// normalize x
var m = @intCast(i32, ix0 >> 20);
if (m == 0) {
// subnormal
while (ix0 == 0) {
m -= 21;
ix0 |= ix1 >> 11;
ix1 <<= 21;
}
// subnormal
var i: u32 = 0;
while (ix0 & 0x00100000 == 0) : (i += 1) {
ix0 <<= 1;
}
m -= @intCast(i32, i) - 1;
ix0 |= ix1 >> @intCast(u5, 32 - i);
ix1 <<= @intCast(u5, i);
}
// unbias exponent
m -= 1023;
ix0 = (ix0 & 0x000FFFFF) | 0x00100000;
if (m & 1 != 0) {
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
}
m >>= 1;
// sqrt(x) bit by bit
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
var q: u32 = 0;
var q1: u32 = 0;
var s0: u32 = 0;
var s1: u32 = 0;
var r: u32 = 0x00200000;
var t: u32 = undefined;
var t1: u32 = undefined;
while (r != 0) {
t = s0 +% r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t1 = s1 +% r;
t = s0;
if (t < ix0 or (t == ix0 and t1 <= ix1)) {
s1 = t1 +% r;
if (t1 & sign == sign and s1 & sign == 0) {
s0 += 1;
}
ix0 -= t;
if (ix1 < t1) {
ix0 -= 1;
}
ix1 = ix1 -% t1;
q1 += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
// rounding direction
if (ix0 | ix1 != 0) {
var z = 1.0 - tiny; // raise inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == 0xFFFFFFFF) {
q1 = 0;
q += 1;
} else if (z > 1.0) {
if (q1 == 0xFFFFFFFE) {
q += 1;
}
q1 += 2;
} else {
q1 += q1 & 1;
}
}
}
ix0 = (q >> 1) + 0x3FE00000;
ix1 = q1 >> 1;
if (q & 1 != 0) {
ix1 |= 0x80000000;
}
// NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same
// behaviour at least.
var iix0 = @intCast(i32, ix0);
iix0 = iix0 +% (m << 20);
const uz = (@intCast(u64, iix0) << 32) | ix1;
return @bitCast(f64, uz);
}
test "sqrt" {
const V = [_]f64{
0.0,
4.089288054930154,
7.538757127071935,
8.97780793672623,
5.304443821913729,
5.682408965311888,
0.5846878579110049,
3.650338664297043,
0.3178091951800732,
7.1505232436382835,
3.6589165881946464,
};
// Note that @sqrt will either generate the sqrt opcode (if supported by the
// target ISA) or a call to `sqrtf` otherwise.
for (V) |val|
try std.testing.expectEqual(@sqrt(val), sqrt(val));
}
test "sqrt special" {
try std.testing.expect(std.math.isPositiveInf(sqrt(std.math.inf(f64))));
try std.testing.expect(sqrt(0.0) == 0.0);
try std.testing.expect(sqrt(-0.0) == -0.0);
try std.testing.expect(isNan(sqrt(-1.0)));
try std.testing.expect(isNan(sqrt(std.math.nan(f64))));
}
fn sqrtf(x: f32) callconv(.C) f32 {
const tiny: f32 = 1.0e-30;
const sign: i32 = @bitCast(i32, @as(u32, 0x80000000));
var ix: i32 = @bitCast(i32, x);
if ((ix & 0x7F800000) == 0x7F800000) {
return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan
}
// zero
if (ix <= 0) {
if (ix & ~sign == 0) {
return x; // sqrt (+-0) = +-0
}
if (ix < 0) {
return math.snan(f32);
}
}
// normalize
var m = ix >> 23;
if (m == 0) {
// subnormal
var i: i32 = 0;
while (ix & 0x00800000 == 0) : (i += 1) {
ix <<= 1;
}
m -= i - 1;
}
m -= 127; // unbias exponent
ix = (ix & 0x007FFFFF) | 0x00800000;
if (m & 1 != 0) { // odd m, double x to even
ix += ix;
}
m >>= 1; // m = [m / 2]
// sqrt(x) bit by bit
ix += ix;
var q: i32 = 0; // q = sqrt(x)
var s: i32 = 0;
var r: i32 = 0x01000000; // r = moving bit right -> left
while (r != 0) {
const t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
// floating add to find rounding direction
if (ix != 0) {
var z = 1.0 - tiny; // inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (z > 1.0) {
q += 2;
} else {
if (q & 1 != 0) {
q += 1;
}
}
}
}
ix = (q >> 1) + 0x3f000000;
ix += m << 23;
return @bitCast(f32, ix);
}
test "sqrtf" {
const V = [_]f32{
0.0,
4.089288054930154,
7.538757127071935,
8.97780793672623,
5.304443821913729,
5.682408965311888,
0.5846878579110049,
3.650338664297043,
0.3178091951800732,
7.1505232436382835,
3.6589165881946464,
};
// Note that @sqrt will either generate the sqrt opcode (if supported by the
// target ISA) or a call to `sqrtf` otherwise.
for (V) |val|
try std.testing.expectEqual(@sqrt(val), sqrtf(val));
}
test "sqrtf special" {
try std.testing.expect(std.math.isPositiveInf(sqrtf(std.math.inf(f32))));
try std.testing.expect(sqrtf(0.0) == 0.0);
try std.testing.expect(sqrtf(-0.0) == -0.0);
try std.testing.expect(isNan(sqrtf(-1.0)));
try std.testing.expect(isNan(sqrtf(std.math.nan(f32))));
}
// TODO we should be able to put this directly in std/linux/x86_64.zig but
// it causes a segfault in release mode. this is a workaround of calling it
// across .o file boundaries. fix comptime @ptrCast of nakedcc functions.

View File

@ -19,9 +19,6 @@ const strong_linkage = if (is_test)
else
std.builtin.GlobalLinkage.Strong;
const long_double_is_f80 = builtin.target.longDoubleIs(f80);
const long_double_is_f128 = builtin.target.longDoubleIs(f128);
comptime {
// These files do their own comptime exporting logic.
_ = @import("compiler_rt/atomics.zig");
@ -726,42 +723,25 @@ comptime {
@export(_aullrem, .{ .name = "\x01__aullrem", .linkage = strong_linkage });
}
if (!is_test) {
if (long_double_is_f80) {
@export(fmodx, .{ .name = "fmodl", .linkage = linkage });
} else if (long_double_is_f128) {
@export(fmodq, .{ .name = "fmodl", .linkage = linkage });
} else {
@export(fmodl, .{ .name = "fmodl", .linkage = linkage });
}
if (long_double_is_f80 or builtin.zig_backend == .stage1) {
// TODO: https://github.com/ziglang/zig/issues/11161
@export(fmodx, .{ .name = "fmodx", .linkage = linkage });
}
@export(fmodq, .{ .name = "fmodq", .linkage = linkage });
@export(floorf, .{ .name = "floorf", .linkage = linkage });
@export(floor, .{ .name = "floor", .linkage = linkage });
@export(floorl, .{ .name = "floorl", .linkage = linkage });
@export(ceilf, .{ .name = "ceilf", .linkage = linkage });
@export(ceil, .{ .name = "ceil", .linkage = linkage });
@export(ceill, .{ .name = "ceill", .linkage = linkage });
@export(fma, .{ .name = "fma", .linkage = linkage });
@export(fmaf, .{ .name = "fmaf", .linkage = linkage });
@export(fmal, .{ .name = "fmal", .linkage = linkage });
if (long_double_is_f80) {
@export(fmal, .{ .name = "__fmax", .linkage = linkage });
} else {
@export(__fmax, .{ .name = "__fmax", .linkage = linkage });
}
if (long_double_is_f128) {
@export(fmal, .{ .name = "fmaq", .linkage = linkage });
} else {
@export(fmaq, .{ .name = "fmaq", .linkage = linkage });
}
}
mathExport("ceil", @import("./compiler_rt/ceil.zig"));
mathExport("cos", @import("./compiler_rt/cos.zig"));
mathExport("exp", @import("./compiler_rt/exp.zig"));
mathExport("exp2", @import("./compiler_rt/exp2.zig"));
mathExport("fabs", @import("./compiler_rt/fabs.zig"));
mathExport("floor", @import("./compiler_rt/floor.zig"));
mathExport("fma", @import("./compiler_rt/fma.zig"));
mathExport("fmax", @import("./compiler_rt/fmax.zig"));
mathExport("fmin", @import("./compiler_rt/fmin.zig"));
mathExport("fmod", @import("./compiler_rt/fmod.zig"));
mathExport("log", @import("./compiler_rt/log.zig"));
mathExport("log10", @import("./compiler_rt/log10.zig"));
mathExport("log2", @import("./compiler_rt/log2.zig"));
mathExport("round", @import("./compiler_rt/round.zig"));
mathExport("sin", @import("./compiler_rt/sin.zig"));
mathExport("sincos", @import("./compiler_rt/sincos.zig"));
mathExport("sqrt", @import("./compiler_rt/sqrt.zig"));
mathExport("tan", @import("./compiler_rt/tan.zig"));
mathExport("trunc", @import("./compiler_rt/trunc.zig"));
if (arch.isSPARC()) {
// SPARC systems use a different naming scheme
@ -842,63 +822,44 @@ comptime {
@export(__unordtf2, .{ .name = "__unordkf2", .linkage = linkage });
// LLVM PPC backend lowers f128 fma to `fmaf128`.
@export(fmal, .{ .name = "fmaf128", .linkage = linkage });
const fmaq = @import("./compiler_rt/fma.zig").fmaq;
@export(fmaq, .{ .name = "fmaf128", .linkage = linkage });
}
}
const math = std.math;
inline fn mathExport(double_name: []const u8, comptime import: type) void {
const half_name = "__" ++ double_name ++ "h";
const half_fn = @field(import, half_name);
const float_name = double_name ++ "f";
const float_fn = @field(import, float_name);
const double_fn = @field(import, double_name);
const long_double_name = double_name ++ "l";
const xf80_name = "__" ++ double_name ++ "x";
const xf80_fn = @field(import, xf80_name);
const quad_name = double_name ++ "q";
const quad_fn = @field(import, quad_name);
fn fmaf(a: f32, b: f32, c: f32) callconv(.C) f32 {
return math.fma(f32, a, b, c);
}
fn fma(a: f64, b: f64, c: f64) callconv(.C) f64 {
return math.fma(f64, a, b, c);
}
fn __fmax(a: f80, b: f80, c: f80) callconv(.C) f80 {
return math.fma(f80, a, b, c);
}
fn fmaq(a: f128, b: f128, c: f128) callconv(.C) f128 {
return math.fma(f128, a, b, c);
}
fn fmal(a: c_longdouble, b: c_longdouble, c: c_longdouble) callconv(.C) c_longdouble {
return math.fma(c_longdouble, a, b, c);
}
@export(half_fn, .{ .name = half_name, .linkage = linkage });
@export(float_fn, .{ .name = float_name, .linkage = linkage });
@export(double_fn, .{ .name = double_name, .linkage = linkage });
@export(xf80_fn, .{ .name = xf80_name, .linkage = linkage });
@export(quad_fn, .{ .name = quad_name, .linkage = linkage });
// TODO add intrinsics for these (and probably the double version too)
// and have the math stuff use the intrinsic. same as @mod and @rem
fn floorf(x: f32) callconv(.C) f32 {
return math.floor(x);
}
fn floor(x: f64) callconv(.C) f64 {
return math.floor(x);
}
fn floorl(x: c_longdouble) callconv(.C) c_longdouble {
if (!long_double_is_f128) {
@panic("TODO implement this");
const pairs = .{
.{ f16, half_fn },
.{ f32, float_fn },
.{ f64, double_fn },
.{ f80, xf80_fn },
.{ f128, quad_fn },
};
inline for (pairs) |pair| {
const F = pair[0];
const func = pair[1];
if (builtin.target.longDoubleIs(F)) {
@export(func, .{ .name = long_double_name, .linkage = linkage });
}
}
return math.floor(x);
}
fn ceilf(x: f32) callconv(.C) f32 {
return math.ceil(x);
}
fn ceil(x: f64) callconv(.C) f64 {
return math.ceil(x);
}
fn ceill(x: c_longdouble) callconv(.C) c_longdouble {
if (!long_double_is_f128) {
@panic("TODO implement this");
}
return math.ceil(x);
}
const fmodq = @import("compiler_rt/fmodq.zig").fmodq;
const fmodx = @import("compiler_rt/fmodx.zig").fmodx;
fn fmodl(x: c_longdouble, y: c_longdouble) callconv(.C) c_longdouble {
if (!long_double_is_f128) {
@panic("TODO implement this");
}
return @floatCast(c_longdouble, fmodq(x, y));
}
// Avoid dragging in the runtime safety mechanisms into this .o file,

View File

@ -4,31 +4,16 @@
// https://git.musl-libc.org/cgit/musl/tree/src/math/ceilf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/ceil.c
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
/// Returns the least integer value greater than of equal to x.
///
/// Special Cases:
/// - ceil(+-0) = +-0
/// - ceil(+-inf) = +-inf
/// - ceil(nan) = nan
pub fn ceil(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => ceil32(x),
f64 => ceil64(x),
f128 => ceil128(x),
// TODO this is not correct for some targets
c_longdouble => @floatCast(c_longdouble, ceil128(x)),
else => @compileError("ceil not implemented for " ++ @typeName(T)),
};
pub fn __ceilh(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, ceilf(x));
}
fn ceil32(x: f32) f32 {
pub fn ceilf(x: f32) callconv(.C) f32 {
var u = @bitCast(u32, x);
var e = @intCast(i32, (u >> 23) & 0xFF) - 0x7F;
var m: u32 = undefined;
@ -61,7 +46,7 @@ fn ceil32(x: f32) f32 {
}
}
fn ceil64(x: f64) f64 {
pub fn ceil(x: f64) callconv(.C) f64 {
const f64_toint = 1.0 / math.floatEps(f64);
const u = @bitCast(u64, x);
@ -92,7 +77,12 @@ fn ceil64(x: f64) f64 {
}
}
fn ceil128(x: f128) f128 {
pub fn __ceilx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, ceilq(x));
}
pub fn ceilq(x: f128) callconv(.C) f128 {
const f128_toint = 1.0 / math.floatEps(f128);
const u = @bitCast(u128, x);
@ -121,50 +111,44 @@ fn ceil128(x: f128) f128 {
}
}
test "math.ceil" {
try expect(ceil(@as(f32, 0.0)) == ceil32(0.0));
try expect(ceil(@as(f64, 0.0)) == ceil64(0.0));
try expect(ceil(@as(f128, 0.0)) == ceil128(0.0));
test "ceil32" {
try expect(ceilf(1.3) == 2.0);
try expect(ceilf(-1.3) == -1.0);
try expect(ceilf(0.2) == 1.0);
}
test "math.ceil32" {
try expect(ceil32(1.3) == 2.0);
try expect(ceil32(-1.3) == -1.0);
try expect(ceil32(0.2) == 1.0);
test "ceil64" {
try expect(ceil(1.3) == 2.0);
try expect(ceil(-1.3) == -1.0);
try expect(ceil(0.2) == 1.0);
}
test "math.ceil64" {
try expect(ceil64(1.3) == 2.0);
try expect(ceil64(-1.3) == -1.0);
try expect(ceil64(0.2) == 1.0);
test "ceil128" {
try expect(ceilq(1.3) == 2.0);
try expect(ceilq(-1.3) == -1.0);
try expect(ceilq(0.2) == 1.0);
}
test "math.ceil128" {
try expect(ceil128(1.3) == 2.0);
try expect(ceil128(-1.3) == -1.0);
try expect(ceil128(0.2) == 1.0);
test "ceil32.special" {
try expect(ceilf(0.0) == 0.0);
try expect(ceilf(-0.0) == -0.0);
try expect(math.isPositiveInf(ceilf(math.inf(f32))));
try expect(math.isNegativeInf(ceilf(-math.inf(f32))));
try expect(math.isNan(ceilf(math.nan(f32))));
}
test "math.ceil32.special" {
try expect(ceil32(0.0) == 0.0);
try expect(ceil32(-0.0) == -0.0);
try expect(math.isPositiveInf(ceil32(math.inf(f32))));
try expect(math.isNegativeInf(ceil32(-math.inf(f32))));
try expect(math.isNan(ceil32(math.nan(f32))));
test "ceil64.special" {
try expect(ceil(0.0) == 0.0);
try expect(ceil(-0.0) == -0.0);
try expect(math.isPositiveInf(ceil(math.inf(f64))));
try expect(math.isNegativeInf(ceil(-math.inf(f64))));
try expect(math.isNan(ceil(math.nan(f64))));
}
test "math.ceil64.special" {
try expect(ceil64(0.0) == 0.0);
try expect(ceil64(-0.0) == -0.0);
try expect(math.isPositiveInf(ceil64(math.inf(f64))));
try expect(math.isNegativeInf(ceil64(-math.inf(f64))));
try expect(math.isNan(ceil64(math.nan(f64))));
}
test "math.ceil128.special" {
try expect(ceil128(0.0) == 0.0);
try expect(ceil128(-0.0) == -0.0);
try expect(math.isPositiveInf(ceil128(math.inf(f128))));
try expect(math.isNegativeInf(ceil128(-math.inf(f128))));
try expect(math.isNan(ceil128(math.nan(f128))));
test "ceil128.special" {
try expect(ceilq(0.0) == 0.0);
try expect(ceilq(-0.0) == -0.0);
try expect(math.isPositiveInf(ceilq(math.inf(f128))));
try expect(math.isNegativeInf(ceilq(-math.inf(f128))));
try expect(math.isNan(ceilq(math.nan(f128))));
}

View File

@ -1,32 +1,17 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/cosf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/cos.c
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
const kernel = @import("__trig.zig");
const __rem_pio2 = @import("__rem_pio2.zig").__rem_pio2;
const __rem_pio2f = @import("__rem_pio2f.zig").__rem_pio2f;
const kernel = @import("trig.zig");
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
/// Returns the cosine of the radian value x.
///
/// Special Cases:
/// - cos(+-inf) = nan
/// - cos(nan) = nan
pub fn cos(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => cos32(x),
f64 => cos64(x),
else => @compileError("cos not implemented for " ++ @typeName(T)),
};
pub fn __cosh(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, cosf(a));
}
fn cos32(x: f32) f32 {
pub fn cosf(x: f32) callconv(.C) f32 {
// Small multiples of pi/2 rounded to double precision.
const c1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
const c2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
@ -74,7 +59,7 @@ fn cos32(x: f32) f32 {
}
var y: f64 = undefined;
const n = __rem_pio2f(x, &y);
const n = rem_pio2f(x, &y);
return switch (n & 3) {
0 => kernel.__cosdf(y),
1 => kernel.__sindf(-y),
@ -83,7 +68,7 @@ fn cos32(x: f32) f32 {
};
}
fn cos64(x: f64) f64 {
pub fn cos(x: f64) callconv(.C) f64 {
var ix = @bitCast(u64, x) >> 32;
ix &= 0x7fffffff;
@ -103,7 +88,7 @@ fn cos64(x: f64) f64 {
}
var y: [2]f64 = undefined;
const n = __rem_pio2(x, &y);
const n = rem_pio2(x, &y);
return switch (n & 3) {
0 => kernel.__cos(y[0], y[1]),
1 => -kernel.__sin(y[0], y[1], 1),
@ -112,43 +97,48 @@ fn cos64(x: f64) f64 {
};
}
test "math.cos" {
try expect(cos(@as(f32, 0.0)) == cos32(0.0));
try expect(cos(@as(f64, 0.0)) == cos64(0.0));
pub fn __cosx(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, cosq(a));
}
test "math.cos32" {
pub fn cosq(a: f128) callconv(.C) f128 {
// TODO: more correct implementation
return cos(@floatCast(f64, a));
}
test "cos32" {
const epsilon = 0.00001;
try expect(math.approxEqAbs(f32, cos32(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f32, cos32(0.2), 0.980067, epsilon));
try expect(math.approxEqAbs(f32, cos32(0.8923), 0.627623, epsilon));
try expect(math.approxEqAbs(f32, cos32(1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f32, cos32(-1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f32, cos32(37.45), 0.969132, epsilon));
try expect(math.approxEqAbs(f32, cos32(89.123), 0.400798, epsilon));
try expect(math.approxEqAbs(f32, cosf(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f32, cosf(0.2), 0.980067, epsilon));
try expect(math.approxEqAbs(f32, cosf(0.8923), 0.627623, epsilon));
try expect(math.approxEqAbs(f32, cosf(1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f32, cosf(-1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f32, cosf(37.45), 0.969132, epsilon));
try expect(math.approxEqAbs(f32, cosf(89.123), 0.400798, epsilon));
}
test "math.cos64" {
test "cos64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, cos64(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f64, cos64(0.2), 0.980067, epsilon));
try expect(math.approxEqAbs(f64, cos64(0.8923), 0.627623, epsilon));
try expect(math.approxEqAbs(f64, cos64(1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f64, cos64(-1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f64, cos64(37.45), 0.969132, epsilon));
try expect(math.approxEqAbs(f64, cos64(89.123), 0.40080, epsilon));
try expect(math.approxEqAbs(f64, cos(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f64, cos(0.2), 0.980067, epsilon));
try expect(math.approxEqAbs(f64, cos(0.8923), 0.627623, epsilon));
try expect(math.approxEqAbs(f64, cos(1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f64, cos(-1.5), 0.070737, epsilon));
try expect(math.approxEqAbs(f64, cos(37.45), 0.969132, epsilon));
try expect(math.approxEqAbs(f64, cos(89.123), 0.40080, epsilon));
}
test "math.cos32.special" {
try expect(math.isNan(cos32(math.inf(f32))));
try expect(math.isNan(cos32(-math.inf(f32))));
try expect(math.isNan(cos32(math.nan(f32))));
test "cos32.special" {
try expect(math.isNan(cosf(math.inf(f32))));
try expect(math.isNan(cosf(-math.inf(f32))));
try expect(math.isNan(cosf(math.nan(f32))));
}
test "math.cos64.special" {
try expect(math.isNan(cos64(math.inf(f64))));
try expect(math.isNan(cos64(-math.inf(f64))));
try expect(math.isNan(cos64(math.nan(f64))));
test "cos64.special" {
try expect(math.isNan(cos(math.inf(f64))));
try expect(math.isNan(cos(-math.inf(f64))));
try expect(math.isNan(cos(math.nan(f64))));
}

View File

@ -30,9 +30,9 @@ fn test__divxf3(a: f80, b: f80) !void {
const x_minus_eps = @bitCast(f80, (@bitCast(u80, x) - 1) | integerBit);
// Make sure result is more accurate than the adjacent floats
const err_x = std.math.fabs(@mulAdd(f80, x, b, -a));
const err_x_plus_eps = std.math.fabs(@mulAdd(f80, x_plus_eps, b, -a));
const err_x_minus_eps = std.math.fabs(@mulAdd(f80, x_minus_eps, b, -a));
const err_x = @fabs(@mulAdd(f80, x, b, -a));
const err_x_plus_eps = @fabs(@mulAdd(f80, x_plus_eps, b, -a));
const err_x_minus_eps = @fabs(@mulAdd(f80, x_minus_eps, b, -a));
try testing.expect(err_x_minus_eps > err_x);
try testing.expect(err_x_plus_eps > err_x);

View File

@ -4,25 +4,16 @@
// https://git.musl-libc.org/cgit/musl/tree/src/math/expf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
/// Returns e raised to the power of x (e^x).
///
/// Special Cases:
/// - exp(+inf) = +inf
/// - exp(nan) = nan
pub fn exp(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => exp32(x),
f64 => exp64(x),
else => @compileError("exp not implemented for " ++ @typeName(T)),
};
pub fn __exph(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, expf(a));
}
fn exp32(x_: f32) f32 {
pub fn expf(x_: f32) callconv(.C) f32 {
const half = [_]f32{ 0.5, -0.5 };
const ln2hi = 6.9314575195e-1;
const ln2lo = 1.4286067653e-6;
@ -97,7 +88,7 @@ fn exp32(x_: f32) f32 {
}
}
fn exp64(x_: f64) f64 {
pub fn exp(x_: f64) callconv(.C) f64 {
const half = [_]f64{ 0.5, -0.5 };
const ln2hi: f64 = 6.93147180369123816490e-01;
const ln2lo: f64 = 1.90821492927058770002e-10;
@ -181,37 +172,42 @@ fn exp64(x_: f64) f64 {
}
}
test "math.exp" {
try expect(exp(@as(f32, 0.0)) == exp32(0.0));
try expect(exp(@as(f64, 0.0)) == exp64(0.0));
pub fn __expx(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, expq(a));
}
test "math.exp32" {
pub fn expq(a: f128) callconv(.C) f128 {
// TODO: more correct implementation
return exp(@floatCast(f64, a));
}
test "exp32" {
const epsilon = 0.000001;
try expect(exp32(0.0) == 1.0);
try expect(math.approxEqAbs(f32, exp32(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f32, exp32(0.2), 1.221403, epsilon));
try expect(math.approxEqAbs(f32, exp32(0.8923), 2.440737, epsilon));
try expect(math.approxEqAbs(f32, exp32(1.5), 4.481689, epsilon));
try expect(expf(0.0) == 1.0);
try expect(math.approxEqAbs(f32, expf(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f32, expf(0.2), 1.221403, epsilon));
try expect(math.approxEqAbs(f32, expf(0.8923), 2.440737, epsilon));
try expect(math.approxEqAbs(f32, expf(1.5), 4.481689, epsilon));
}
test "math.exp64" {
test "exp64" {
const epsilon = 0.000001;
try expect(exp64(0.0) == 1.0);
try expect(math.approxEqAbs(f64, exp64(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f64, exp64(0.2), 1.221403, epsilon));
try expect(math.approxEqAbs(f64, exp64(0.8923), 2.440737, epsilon));
try expect(math.approxEqAbs(f64, exp64(1.5), 4.481689, epsilon));
try expect(exp(0.0) == 1.0);
try expect(math.approxEqAbs(f64, exp(0.0), 1.0, epsilon));
try expect(math.approxEqAbs(f64, exp(0.2), 1.221403, epsilon));
try expect(math.approxEqAbs(f64, exp(0.8923), 2.440737, epsilon));
try expect(math.approxEqAbs(f64, exp(1.5), 4.481689, epsilon));
}
test "math.exp32.special" {
try expect(math.isPositiveInf(exp32(math.inf(f32))));
try expect(math.isNan(exp32(math.nan(f32))));
test "exp32.special" {
try expect(math.isPositiveInf(expf(math.inf(f32))));
try expect(math.isNan(expf(math.nan(f32))));
}
test "math.exp64.special" {
try expect(math.isPositiveInf(exp64(math.inf(f64))));
try expect(math.isNan(exp64(math.nan(f64))));
test "exp64.special" {
try expect(math.isPositiveInf(exp(math.inf(f64))));
try expect(math.isNan(exp(math.nan(f64))));
}

View File

@ -4,44 +4,16 @@
// https://git.musl-libc.org/cgit/musl/tree/src/math/exp2f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/exp2.c
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
/// Returns 2 raised to the power of x (2^x).
///
/// Special Cases:
/// - exp2(+inf) = +inf
/// - exp2(nan) = nan
pub fn exp2(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => exp2_32(x),
f64 => exp2_64(x),
else => @compileError("exp2 not implemented for " ++ @typeName(T)),
};
pub fn __exp2h(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, exp2f(x));
}
const exp2ft = [_]f64{
0x1.6a09e667f3bcdp-1,
0x1.7a11473eb0187p-1,
0x1.8ace5422aa0dbp-1,
0x1.9c49182a3f090p-1,
0x1.ae89f995ad3adp-1,
0x1.c199bdd85529cp-1,
0x1.d5818dcfba487p-1,
0x1.ea4afa2a490dap-1,
0x1.0000000000000p+0,
0x1.0b5586cf9890fp+0,
0x1.172b83c7d517bp+0,
0x1.2387a6e756238p+0,
0x1.306fe0a31b715p+0,
0x1.3dea64c123422p+0,
0x1.4bfdad5362a27p+0,
0x1.5ab07dd485429p+0,
};
fn exp2_32(x: f32) f32 {
pub fn exp2f(x: f32) callconv(.C) f32 {
const tblsiz = @intCast(u32, exp2ft.len);
const redux: f32 = 0x1.8p23 / @intToFloat(f32, tblsiz);
const P1: f32 = 0x1.62e430p-1;
@ -98,6 +70,104 @@ fn exp2_32(x: f32) f32 {
return @floatCast(f32, r * uk);
}
pub fn exp2(x: f64) callconv(.C) f64 {
const tblsiz: u32 = @intCast(u32, exp2dt.len / 2);
const redux: f64 = 0x1.8p52 / @intToFloat(f64, tblsiz);
const P1: f64 = 0x1.62e42fefa39efp-1;
const P2: f64 = 0x1.ebfbdff82c575p-3;
const P3: f64 = 0x1.c6b08d704a0a6p-5;
const P4: f64 = 0x1.3b2ab88f70400p-7;
const P5: f64 = 0x1.5d88003875c74p-10;
const ux = @bitCast(u64, x);
const ix = @intCast(u32, ux >> 32) & 0x7FFFFFFF;
// TODO: This should be handled beneath.
if (math.isNan(x)) {
return math.nan(f64);
}
// |x| >= 1022 or nan
if (ix >= 0x408FF000) {
// x >= 1024 or nan
if (ix >= 0x40900000 and ux >> 63 == 0) {
math.raiseOverflow();
return math.inf(f64);
}
// -inf or -nan
if (ix >= 0x7FF00000) {
return -1 / x;
}
// x <= -1022
if (ux >> 63 != 0) {
// underflow
if (x <= -1075 or x - 0x1.0p52 + 0x1.0p52 != x) {
math.doNotOptimizeAway(@floatCast(f32, -0x1.0p-149 / x));
}
if (x <= -1075) {
return 0;
}
}
}
// |x| < 0x1p-54
else if (ix < 0x3C900000) {
return 1.0 + x;
}
// NOTE: musl relies on unsafe behaviours which are replicated below
// (addition overflow, division truncation, casting). Appears that this
// produces the intended result but should confirm how GCC/Clang handle this
// to ensure.
// reduce x
var uf: f64 = x + redux;
// NOTE: musl performs an implicit 64-bit to 32-bit u32 truncation here
var i_0: u32 = @truncate(u32, @bitCast(u64, uf));
i_0 +%= tblsiz / 2;
const k: u32 = i_0 / tblsiz * tblsiz;
const ik: i32 = @divTrunc(@bitCast(i32, k), tblsiz);
i_0 %= tblsiz;
uf -= redux;
// r = exp2(y) = exp2t[i_0] * p(z - eps[i])
var z: f64 = x - uf;
const t: f64 = exp2dt[@intCast(usize, 2 * i_0)];
z -= exp2dt[@intCast(usize, 2 * i_0 + 1)];
const r: f64 = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * P5))));
return math.scalbn(r, ik);
}
pub fn __exp2x(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, exp2q(x));
}
pub fn exp2q(x: f128) callconv(.C) f128 {
// TODO: more correct implementation
return exp2(@floatCast(f64, x));
}
const exp2ft = [_]f64{
0x1.6a09e667f3bcdp-1,
0x1.7a11473eb0187p-1,
0x1.8ace5422aa0dbp-1,
0x1.9c49182a3f090p-1,
0x1.ae89f995ad3adp-1,
0x1.c199bdd85529cp-1,
0x1.d5818dcfba487p-1,
0x1.ea4afa2a490dap-1,
0x1.0000000000000p+0,
0x1.0b5586cf9890fp+0,
0x1.172b83c7d517bp+0,
0x1.2387a6e756238p+0,
0x1.306fe0a31b715p+0,
0x1.3dea64c123422p+0,
0x1.4bfdad5362a27p+0,
0x1.5ab07dd485429p+0,
};
const exp2dt = [_]f64{
// exp2(z + eps) eps
0x1.6a09e667f3d5dp-1, 0x1.9880p-44,
@ -358,108 +428,34 @@ const exp2dt = [_]f64{
0x1.690f4b19e9471p+0, -0x1.9780p-45,
};
fn exp2_64(x: f64) f64 {
const tblsiz: u32 = @intCast(u32, exp2dt.len / 2);
const redux: f64 = 0x1.8p52 / @intToFloat(f64, tblsiz);
const P1: f64 = 0x1.62e42fefa39efp-1;
const P2: f64 = 0x1.ebfbdff82c575p-3;
const P3: f64 = 0x1.c6b08d704a0a6p-5;
const P4: f64 = 0x1.3b2ab88f70400p-7;
const P5: f64 = 0x1.5d88003875c74p-10;
const ux = @bitCast(u64, x);
const ix = @intCast(u32, ux >> 32) & 0x7FFFFFFF;
// TODO: This should be handled beneath.
if (math.isNan(x)) {
return math.nan(f64);
}
// |x| >= 1022 or nan
if (ix >= 0x408FF000) {
// x >= 1024 or nan
if (ix >= 0x40900000 and ux >> 63 == 0) {
math.raiseOverflow();
return math.inf(f64);
}
// -inf or -nan
if (ix >= 0x7FF00000) {
return -1 / x;
}
// x <= -1022
if (ux >> 63 != 0) {
// underflow
if (x <= -1075 or x - 0x1.0p52 + 0x1.0p52 != x) {
math.doNotOptimizeAway(@floatCast(f32, -0x1.0p-149 / x));
}
if (x <= -1075) {
return 0;
}
}
}
// |x| < 0x1p-54
else if (ix < 0x3C900000) {
return 1.0 + x;
}
// NOTE: musl relies on unsafe behaviours which are replicated below
// (addition overflow, division truncation, casting). Appears that this
// produces the intended result but should confirm how GCC/Clang handle this
// to ensure.
// reduce x
var uf: f64 = x + redux;
// NOTE: musl performs an implicit 64-bit to 32-bit u32 truncation here
var i_0: u32 = @truncate(u32, @bitCast(u64, uf));
i_0 +%= tblsiz / 2;
const k: u32 = i_0 / tblsiz * tblsiz;
const ik: i32 = @divTrunc(@bitCast(i32, k), tblsiz);
i_0 %= tblsiz;
uf -= redux;
// r = exp2(y) = exp2t[i_0] * p(z - eps[i])
var z: f64 = x - uf;
const t: f64 = exp2dt[@intCast(usize, 2 * i_0)];
z -= exp2dt[@intCast(usize, 2 * i_0 + 1)];
const r: f64 = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * P5))));
return math.scalbn(r, ik);
}
test "math.exp2" {
try expect(exp2(@as(f32, 0.8923)) == exp2_32(0.8923));
try expect(exp2(@as(f64, 0.8923)) == exp2_64(0.8923));
}
test "math.exp2_32" {
test "exp2_32" {
const epsilon = 0.000001;
try expect(exp2_32(0.0) == 1.0);
try expect(math.approxEqAbs(f32, exp2_32(0.2), 1.148698, epsilon));
try expect(math.approxEqAbs(f32, exp2_32(0.8923), 1.856133, epsilon));
try expect(math.approxEqAbs(f32, exp2_32(1.5), 2.828427, epsilon));
try expect(math.approxEqAbs(f32, exp2_32(37.45), 187747237888, epsilon));
try expect(math.approxEqAbs(f32, exp2_32(-1), 0.5, epsilon));
try expect(exp2f(0.0) == 1.0);
try expect(math.approxEqAbs(f32, exp2f(0.2), 1.148698, epsilon));
try expect(math.approxEqAbs(f32, exp2f(0.8923), 1.856133, epsilon));
try expect(math.approxEqAbs(f32, exp2f(1.5), 2.828427, epsilon));
try expect(math.approxEqAbs(f32, exp2f(37.45), 187747237888, epsilon));
try expect(math.approxEqAbs(f32, exp2f(-1), 0.5, epsilon));
}
test "math.exp2_64" {
test "exp2_64" {
const epsilon = 0.000001;
try expect(exp2_64(0.0) == 1.0);
try expect(math.approxEqAbs(f64, exp2_64(0.2), 1.148698, epsilon));
try expect(math.approxEqAbs(f64, exp2_64(0.8923), 1.856133, epsilon));
try expect(math.approxEqAbs(f64, exp2_64(1.5), 2.828427, epsilon));
try expect(math.approxEqAbs(f64, exp2_64(-1), 0.5, epsilon));
try expect(math.approxEqAbs(f64, exp2_64(-0x1.a05cc754481d1p-2), 0x1.824056efc687cp-1, epsilon));
try expect(exp2(0.0) == 1.0);
try expect(math.approxEqAbs(f64, exp2(0.2), 1.148698, epsilon));
try expect(math.approxEqAbs(f64, exp2(0.8923), 1.856133, epsilon));
try expect(math.approxEqAbs(f64, exp2(1.5), 2.828427, epsilon));
try expect(math.approxEqAbs(f64, exp2(-1), 0.5, epsilon));
try expect(math.approxEqAbs(f64, exp2(-0x1.a05cc754481d1p-2), 0x1.824056efc687cp-1, epsilon));
}
test "math.exp2_32.special" {
try expect(math.isPositiveInf(exp2_32(math.inf(f32))));
try expect(math.isNan(exp2_32(math.nan(f32))));
test "exp2_32.special" {
try expect(math.isPositiveInf(exp2f(math.inf(f32))));
try expect(math.isNan(exp2f(math.nan(f32))));
}
test "math.exp2_64.special" {
try expect(math.isPositiveInf(exp2_64(math.inf(f64))));
try expect(math.isNan(exp2_64(math.nan(f64))));
test "exp2_64.special" {
try expect(math.isPositiveInf(exp2(math.inf(f64))));
try expect(math.isNan(exp2(math.nan(f64))));
}

View File

@ -0,0 +1,29 @@
const std = @import("std");
pub fn __fabsh(a: f16) callconv(.C) f16 {
return generic_fabs(a);
}
pub fn fabsf(a: f32) callconv(.C) f32 {
return generic_fabs(a);
}
pub fn fabs(a: f64) callconv(.C) f64 {
return generic_fabs(a);
}
pub fn __fabsx(a: f80) callconv(.C) f80 {
return generic_fabs(a);
}
pub fn fabsq(a: f128) callconv(.C) f128 {
return generic_fabs(a);
}
inline fn generic_fabs(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
const TBits = std.meta.Int(.unsigned, @typeInfo(T).Float.bits);
const float_bits = @bitCast(TBits, x);
const remove_sign = ~@as(TBits, 0) >> 1;
return @bitCast(T, float_bits & remove_sign);
}

View File

@ -4,32 +4,11 @@
// https://git.musl-libc.org/cgit/musl/tree/src/math/floorf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/floor.c
const expect = std.testing.expect;
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
/// Returns the greatest integer value less than or equal to x.
///
/// Special Cases:
/// - floor(+-0) = +-0
/// - floor(+-inf) = +-inf
/// - floor(nan) = nan
pub fn floor(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f16 => floor16(x),
f32 => floor32(x),
f64 => floor64(x),
f128 => floor128(x),
// TODO this is not correct for some targets
c_longdouble => @floatCast(c_longdouble, floor128(x)),
else => @compileError("floor not implemented for " ++ @typeName(T)),
};
}
fn floor16(x: f16) f16 {
pub fn __floorh(x: f16) callconv(.C) f16 {
var u = @bitCast(u16, x);
const e = @intCast(i16, (u >> 10) & 31) - 15;
var m: u16 = undefined;
@ -63,7 +42,7 @@ fn floor16(x: f16) f16 {
}
}
fn floor32(x: f32) f32 {
pub fn floorf(x: f32) callconv(.C) f32 {
var u = @bitCast(u32, x);
const e = @intCast(i32, (u >> 23) & 0xFF) - 0x7F;
var m: u32 = undefined;
@ -97,7 +76,7 @@ fn floor32(x: f32) f32 {
}
}
fn floor64(x: f64) f64 {
pub fn floor(x: f64) callconv(.C) f64 {
const f64_toint = 1.0 / math.floatEps(f64);
const u = @bitCast(u64, x);
@ -128,7 +107,12 @@ fn floor64(x: f64) f64 {
}
}
fn floor128(x: f128) f128 {
pub fn __floorx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, floorq(x));
}
pub fn floorq(x: f128) callconv(.C) f128 {
const f128_toint = 1.0 / math.floatEps(f128);
const u = @bitCast(u128, x);
@ -157,65 +141,58 @@ fn floor128(x: f128) f128 {
}
}
test "math.floor" {
try expect(floor(@as(f16, 1.3)) == floor16(1.3));
try expect(floor(@as(f32, 1.3)) == floor32(1.3));
try expect(floor(@as(f64, 1.3)) == floor64(1.3));
try expect(floor(@as(f128, 1.3)) == floor128(1.3));
test "floor16" {
try expect(__floorh(1.3) == 1.0);
try expect(__floorh(-1.3) == -2.0);
try expect(__floorh(0.2) == 0.0);
}
test "math.floor16" {
try expect(floor16(1.3) == 1.0);
try expect(floor16(-1.3) == -2.0);
try expect(floor16(0.2) == 0.0);
test "floor32" {
try expect(floorf(1.3) == 1.0);
try expect(floorf(-1.3) == -2.0);
try expect(floorf(0.2) == 0.0);
}
test "math.floor32" {
try expect(floor32(1.3) == 1.0);
try expect(floor32(-1.3) == -2.0);
try expect(floor32(0.2) == 0.0);
test "floor64" {
try expect(floor(1.3) == 1.0);
try expect(floor(-1.3) == -2.0);
try expect(floor(0.2) == 0.0);
}
test "math.floor64" {
try expect(floor64(1.3) == 1.0);
try expect(floor64(-1.3) == -2.0);
try expect(floor64(0.2) == 0.0);
test "floor128" {
try expect(floorq(1.3) == 1.0);
try expect(floorq(-1.3) == -2.0);
try expect(floorq(0.2) == 0.0);
}
test "math.floor128" {
try expect(floor128(1.3) == 1.0);
try expect(floor128(-1.3) == -2.0);
try expect(floor128(0.2) == 0.0);
test "floor16.special" {
try expect(__floorh(0.0) == 0.0);
try expect(__floorh(-0.0) == -0.0);
try expect(math.isPositiveInf(__floorh(math.inf(f16))));
try expect(math.isNegativeInf(__floorh(-math.inf(f16))));
try expect(math.isNan(__floorh(math.nan(f16))));
}
test "math.floor16.special" {
try expect(floor16(0.0) == 0.0);
try expect(floor16(-0.0) == -0.0);
try expect(math.isPositiveInf(floor16(math.inf(f16))));
try expect(math.isNegativeInf(floor16(-math.inf(f16))));
try expect(math.isNan(floor16(math.nan(f16))));
test "floor32.special" {
try expect(floorf(0.0) == 0.0);
try expect(floorf(-0.0) == -0.0);
try expect(math.isPositiveInf(floorf(math.inf(f32))));
try expect(math.isNegativeInf(floorf(-math.inf(f32))));
try expect(math.isNan(floorf(math.nan(f32))));
}
test "math.floor32.special" {
try expect(floor32(0.0) == 0.0);
try expect(floor32(-0.0) == -0.0);
try expect(math.isPositiveInf(floor32(math.inf(f32))));
try expect(math.isNegativeInf(floor32(-math.inf(f32))));
try expect(math.isNan(floor32(math.nan(f32))));
test "floor64.special" {
try expect(floor(0.0) == 0.0);
try expect(floor(-0.0) == -0.0);
try expect(math.isPositiveInf(floor(math.inf(f64))));
try expect(math.isNegativeInf(floor(-math.inf(f64))));
try expect(math.isNan(floor(math.nan(f64))));
}
test "math.floor64.special" {
try expect(floor64(0.0) == 0.0);
try expect(floor64(-0.0) == -0.0);
try expect(math.isPositiveInf(floor64(math.inf(f64))));
try expect(math.isNegativeInf(floor64(-math.inf(f64))));
try expect(math.isNan(floor64(math.nan(f64))));
}
test "math.floor128.special" {
try expect(floor128(0.0) == 0.0);
try expect(floor128(-0.0) == -0.0);
try expect(math.isPositiveInf(floor128(math.inf(f128))));
try expect(math.isNegativeInf(floor128(-math.inf(f128))));
try expect(math.isNan(floor128(math.nan(f128))));
test "floor128.special" {
try expect(floorq(0.0) == 0.0);
try expect(floorq(-0.0) == -0.0);
try expect(math.isPositiveInf(floorq(math.inf(f128))));
try expect(math.isNegativeInf(floorq(-math.inf(f128))));
try expect(math.isNan(floorq(math.nan(f128))));
}

View File

@ -5,27 +5,16 @@
// https://git.musl-libc.org/cgit/musl/tree/src/math/fmaf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/fma.c
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
/// Returns x * y + z with a single rounding error.
pub fn fma(comptime T: type, x: T, y: T, z: T) T {
return switch (T) {
f32 => fma32(x, y, z),
f64 => fma64(x, y, z),
f128 => fma128(x, y, z),
// TODO this is not correct for some targets
c_longdouble => @floatCast(c_longdouble, fma128(x, y, z)),
f80 => @floatCast(f80, fma128(x, y, z)),
else => @compileError("fma not implemented for " ++ @typeName(T)),
};
pub fn __fmah(x: f16, y: f16, z: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, fmaf(x, y, z));
}
fn fma32(x: f32, y: f32, z: f32) f32 {
pub fn fmaf(x: f32, y: f32, z: f32) callconv(.C) f32 {
const xy = @as(f64, x) * y;
const xy_z = xy + z;
const u = @bitCast(u64, xy_z);
@ -39,8 +28,8 @@ fn fma32(x: f32, y: f32, z: f32) f32 {
}
}
// NOTE: Upstream fma.c has been rewritten completely to raise fp exceptions more accurately.
fn fma64(x: f64, y: f64, z: f64) f64 {
/// NOTE: Upstream fma.c has been rewritten completely to raise fp exceptions more accurately.
pub fn fma(x: f64, y: f64, z: f64) callconv(.C) f64 {
if (!math.isFinite(x) or !math.isFinite(y)) {
return x * y + z;
}
@ -87,6 +76,65 @@ fn fma64(x: f64, y: f64, z: f64) f64 {
}
}
pub fn __fmax(a: f80, b: f80, c: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, fmaq(a, b, c));
}
/// Fused multiply-add: Compute x * y + z with a single rounding error.
///
/// We use scaling to avoid overflow/underflow, along with the
/// canonical precision-doubling technique adapted from:
///
/// Dekker, T. A Floating-Point Technique for Extending the
/// Available Precision. Numer. Math. 18, 224-242 (1971).
pub fn fmaq(x: f128, y: f128, z: f128) callconv(.C) f128 {
if (!math.isFinite(x) or !math.isFinite(y)) {
return x * y + z;
}
if (!math.isFinite(z)) {
return z;
}
if (x == 0.0 or y == 0.0) {
return x * y + z;
}
if (z == 0.0) {
return x * y;
}
const x1 = math.frexp(x);
var ex = x1.exponent;
var xs = x1.significand;
const x2 = math.frexp(y);
var ey = x2.exponent;
var ys = x2.significand;
const x3 = math.frexp(z);
var ez = x3.exponent;
var zs = x3.significand;
var spread = ex + ey - ez;
if (spread <= 113 * 2) {
zs = math.scalbn(zs, -spread);
} else {
zs = math.copysign(f128, math.floatMin(f128), zs);
}
const xy = dd_mul128(xs, ys);
const r = dd_add128(xy.hi, zs);
spread = ex + ey;
if (r.hi == 0.0) {
return xy.hi + zs + math.scalbn(xy.lo, spread);
}
const adj = add_adjusted128(r.lo, xy.lo);
if (spread + math.ilogb(r.hi) > -16383) {
return math.scalbn(r.hi + adj, spread);
} else {
return add_and_denorm128(r.hi, adj, spread);
}
}
const dd = struct {
hi: f64,
lo: f64,
@ -242,98 +290,38 @@ fn dd_mul128(a: f128, b: f128) dd128 {
return ret;
}
/// Fused multiply-add: Compute x * y + z with a single rounding error.
///
/// We use scaling to avoid overflow/underflow, along with the
/// canonical precision-doubling technique adapted from:
///
/// Dekker, T. A Floating-Point Technique for Extending the
/// Available Precision. Numer. Math. 18, 224-242 (1971).
fn fma128(x: f128, y: f128, z: f128) f128 {
if (!math.isFinite(x) or !math.isFinite(y)) {
return x * y + z;
}
if (!math.isFinite(z)) {
return z;
}
if (x == 0.0 or y == 0.0) {
return x * y + z;
}
if (z == 0.0) {
return x * y;
}
const x1 = math.frexp(x);
var ex = x1.exponent;
var xs = x1.significand;
const x2 = math.frexp(y);
var ey = x2.exponent;
var ys = x2.significand;
const x3 = math.frexp(z);
var ez = x3.exponent;
var zs = x3.significand;
var spread = ex + ey - ez;
if (spread <= 113 * 2) {
zs = math.scalbn(zs, -spread);
} else {
zs = math.copysign(f128, math.floatMin(f128), zs);
}
const xy = dd_mul128(xs, ys);
const r = dd_add128(xy.hi, zs);
spread = ex + ey;
if (r.hi == 0.0) {
return xy.hi + zs + math.scalbn(xy.lo, spread);
}
const adj = add_adjusted128(r.lo, xy.lo);
if (spread + math.ilogb(r.hi) > -16383) {
return math.scalbn(r.hi + adj, spread);
} else {
return add_and_denorm128(r.hi, adj, spread);
}
}
test "type dispatch" {
try expect(fma(f32, 0.0, 1.0, 1.0) == fma32(0.0, 1.0, 1.0));
try expect(fma(f64, 0.0, 1.0, 1.0) == fma64(0.0, 1.0, 1.0));
try expect(fma(f128, 0.0, 1.0, 1.0) == fma128(0.0, 1.0, 1.0));
}
test "32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, fma32(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f32, fma32(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f32, fma32(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f32, fma32(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f32, fma32(37.45, 5.0, 9.124), 196.374004, epsilon));
try expect(math.approxEqAbs(f32, fma32(89.123, 5.0, 9.124), 454.739005, epsilon));
try expect(math.approxEqAbs(f32, fma32(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
try expect(math.approxEqAbs(f32, fmaf(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f32, fmaf(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f32, fmaf(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f32, fmaf(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f32, fmaf(37.45, 5.0, 9.124), 196.374004, epsilon));
try expect(math.approxEqAbs(f32, fmaf(89.123, 5.0, 9.124), 454.739005, epsilon));
try expect(math.approxEqAbs(f32, fmaf(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}
test "64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, fma64(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f64, fma64(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f64, fma64(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f64, fma64(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f64, fma64(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f64, fma64(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f64, fma64(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
try expect(math.approxEqAbs(f64, fma(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f64, fma(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f64, fma(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f64, fma(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f64, fma(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f64, fma(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f64, fma(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}
test "128" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f128, fma128(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f128, fma128(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f128, fma128(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f128, fma128(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f128, fma128(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f128, fma128(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f128, fma128(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
try expect(math.approxEqAbs(f128, fmaq(0.0, 5.0, 9.124), 9.124, epsilon));
try expect(math.approxEqAbs(f128, fmaq(0.2, 5.0, 9.124), 10.124, epsilon));
try expect(math.approxEqAbs(f128, fmaq(0.8923, 5.0, 9.124), 13.5855, epsilon));
try expect(math.approxEqAbs(f128, fmaq(1.5, 5.0, 9.124), 16.624, epsilon));
try expect(math.approxEqAbs(f128, fmaq(37.45, 5.0, 9.124), 196.374, epsilon));
try expect(math.approxEqAbs(f128, fmaq(89.123, 5.0, 9.124), 454.739, epsilon));
try expect(math.approxEqAbs(f128, fmaq(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
}

View File

@ -0,0 +1,43 @@
const std = @import("std");
const math = std.math;
pub fn __fmaxh(x: f16, y: f16) callconv(.C) f16 {
return generic_fmax(f16, x, y);
}
pub fn fmaxf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmax(f32, x, y);
}
pub fn fmax(x: f64, y: f64) callconv(.C) f64 {
return generic_fmax(f64, x, y);
}
pub fn __fmaxx(x: f80, y: f80) callconv(.C) f80 {
return generic_fmax(f80, x, y);
}
pub fn fmaxq(x: f128, y: f128) callconv(.C) f128 {
return generic_fmax(f128, x, y);
}
inline fn generic_fmax(comptime T: type, x: T, y: T) T {
if (math.isNan(x))
return y;
if (math.isNan(y))
return x;
return if (x < y) y else x;
}
test "generic_fmax" {
inline for ([_]type{ f32, f64, c_longdouble, f80, f128 }) |T| {
const nan_val = math.nan(T);
try std.testing.expect(math.isNan(generic_fmax(T, nan_val, nan_val)));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, nan_val, 1.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, 1.0, nan_val));
try std.testing.expectEqual(@as(T, 10.0), generic_fmax(T, 1.0, 10.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmax(T, 1.0, -1.0));
}
}

View File

@ -0,0 +1,43 @@
const std = @import("std");
const math = std.math;
pub fn __fminh(x: f16, y: f16) callconv(.C) f16 {
return generic_fmin(f16, x, y);
}
pub fn fminf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmin(f32, x, y);
}
pub fn fmin(x: f64, y: f64) callconv(.C) f64 {
return generic_fmin(f64, x, y);
}
pub fn __fminx(x: f80, y: f80) callconv(.C) f80 {
return generic_fmin(f80, x, y);
}
pub fn fminq(x: f128, y: f128) callconv(.C) f128 {
return generic_fmin(f128, x, y);
}
inline fn generic_fmin(comptime T: type, x: T, y: T) T {
if (math.isNan(x))
return y;
if (math.isNan(y))
return x;
return if (x < y) x else y;
}
test "generic_fmin" {
inline for ([_]type{ f32, f64, c_longdouble, f80, f128 }) |T| {
const nan_val = math.nan(T);
try std.testing.expect(math.isNan(generic_fmin(T, nan_val, nan_val)));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, nan_val, 1.0));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, 1.0, nan_val));
try std.testing.expectEqual(@as(T, 1.0), generic_fmin(T, 1.0, 10.0));
try std.testing.expectEqual(@as(T, -1.0), generic_fmin(T, 1.0, -1.0));
}
}

View File

@ -0,0 +1,351 @@
const builtin = @import("builtin");
const std = @import("std");
const math = std.math;
const assert = std.debug.assert;
const normalize = @import("divdf3.zig").normalize;
pub fn __fmodh(x: f16, y: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, fmodf(x, y));
}
pub fn fmodf(x: f32, y: f32) callconv(.C) f32 {
return generic_fmod(f32, x, y);
}
pub fn fmod(x: f64, y: f64) callconv(.C) f64 {
return generic_fmod(f64, x, y);
}
/// fmodx - floating modulo large, returns the remainder of division for f80 types
/// Logic and flow heavily inspired by MUSL fmodl for 113 mantissa digits
pub fn __fmodx(a: f80, b: f80) callconv(.C) f80 {
@setRuntimeSafety(builtin.is_test);
const T = f80;
const Z = std.meta.Int(.unsigned, @bitSizeOf(T));
const significandBits = math.floatMantissaBits(T);
const fractionalBits = math.floatFractionalBits(T);
const exponentBits = math.floatExponentBits(T);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
var aRep = @bitCast(Z, a);
var bRep = @bitCast(Z, b);
const signA = aRep & signBit;
var expA = @intCast(i32, (@bitCast(Z, a) >> significandBits) & maxExponent);
var expB = @intCast(i32, (@bitCast(Z, b) >> significandBits) & maxExponent);
// There are 3 cases where the answer is undefined, check for:
// - fmodx(val, 0)
// - fmodx(val, NaN)
// - fmodx(inf, val)
// The sign on checked values does not matter.
// Doing (a * b) / (a * b) procudes undefined results
// because the three cases always produce undefined calculations:
// - 0 / 0
// - val * NaN
// - inf / inf
if (b == 0 or math.isNan(b) or expA == maxExponent) {
return (a * b) / (a * b);
}
// Remove the sign from both
aRep &= ~signBit;
bRep &= ~signBit;
if (aRep <= bRep) {
if (aRep == bRep) {
return 0 * a;
}
return a;
}
if (expA == 0) expA = normalize(f80, &aRep);
if (expB == 0) expB = normalize(f80, &bRep);
var highA: u64 = 0;
var highB: u64 = 0;
var lowA: u64 = @truncate(u64, aRep);
var lowB: u64 = @truncate(u64, bRep);
while (expA > expB) : (expA -= 1) {
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -%= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = 2 *% high + (low >> 63);
lowA = 2 *% low;
} else {
highA = 2 *% highA + (lowA >> 63);
lowA = 2 *% lowA;
}
}
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -%= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = high;
lowA = low;
}
while ((lowA >> fractionalBits) == 0) {
lowA = 2 *% lowA;
expA = expA - 1;
}
// Combine the exponent with the sign and significand, normalize if happened to be denormalized
if (expA < -fractionalBits) {
return @bitCast(T, signA);
} else if (expA <= 0) {
return @bitCast(T, (lowA >> @intCast(math.Log2Int(u64), 1 - expA)) | signA);
} else {
return @bitCast(T, lowA | (@as(Z, @intCast(u16, expA)) << significandBits) | signA);
}
}
/// fmodq - floating modulo large, returns the remainder of division for f128 types
/// Logic and flow heavily inspired by MUSL fmodl for 113 mantissa digits
pub fn fmodq(a: f128, b: f128) callconv(.C) f128 {
@setRuntimeSafety(builtin.is_test);
var amod = a;
var bmod = b;
const aPtr_u64 = @ptrCast([*]u64, &amod);
const bPtr_u64 = @ptrCast([*]u64, &bmod);
const aPtr_u16 = @ptrCast([*]u16, &amod);
const bPtr_u16 = @ptrCast([*]u16, &bmod);
const exp_and_sign_index = comptime switch (builtin.target.cpu.arch.endian()) {
.Little => 7,
.Big => 0,
};
const low_index = comptime switch (builtin.target.cpu.arch.endian()) {
.Little => 0,
.Big => 1,
};
const high_index = comptime switch (builtin.target.cpu.arch.endian()) {
.Little => 1,
.Big => 0,
};
const signA = aPtr_u16[exp_and_sign_index] & 0x8000;
var expA = @intCast(i32, (aPtr_u16[exp_and_sign_index] & 0x7fff));
var expB = @intCast(i32, (bPtr_u16[exp_and_sign_index] & 0x7fff));
// There are 3 cases where the answer is undefined, check for:
// - fmodq(val, 0)
// - fmodq(val, NaN)
// - fmodq(inf, val)
// The sign on checked values does not matter.
// Doing (a * b) / (a * b) procudes undefined results
// because the three cases always produce undefined calculations:
// - 0 / 0
// - val * NaN
// - inf / inf
if (b == 0 or std.math.isNan(b) or expA == 0x7fff) {
return (a * b) / (a * b);
}
// Remove the sign from both
aPtr_u16[exp_and_sign_index] = @bitCast(u16, @intCast(i16, expA));
bPtr_u16[exp_and_sign_index] = @bitCast(u16, @intCast(i16, expB));
if (amod <= bmod) {
if (amod == bmod) {
return 0 * a;
}
return a;
}
if (expA == 0) {
amod *= 0x1p120;
expA = @as(i32, aPtr_u16[exp_and_sign_index]) - 120;
}
if (expB == 0) {
bmod *= 0x1p120;
expB = @as(i32, bPtr_u16[exp_and_sign_index]) - 120;
}
// OR in extra non-stored mantissa digit
var highA: u64 = (aPtr_u64[high_index] & (std.math.maxInt(u64) >> 16)) | 1 << 48;
var highB: u64 = (bPtr_u64[high_index] & (std.math.maxInt(u64) >> 16)) | 1 << 48;
var lowA: u64 = aPtr_u64[low_index];
var lowB: u64 = bPtr_u64[low_index];
while (expA > expB) : (expA -= 1) {
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -%= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = 2 *% high + (low >> 63);
lowA = 2 *% low;
} else {
highA = 2 *% highA + (lowA >> 63);
lowA = 2 *% lowA;
}
}
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = high;
lowA = low;
}
while (highA >> 48 == 0) {
highA = 2 *% highA + (lowA >> 63);
lowA = 2 *% lowA;
expA = expA - 1;
}
// Overwrite the current amod with the values in highA and lowA
aPtr_u64[high_index] = highA;
aPtr_u64[low_index] = lowA;
// Combine the exponent with the sign, normalize if happend to be denormalized
if (expA <= 0) {
aPtr_u16[exp_and_sign_index] = @truncate(u16, @bitCast(u32, (expA +% 120))) | signA;
amod *= 0x1p-120;
} else {
aPtr_u16[exp_and_sign_index] = @truncate(u16, @bitCast(u32, expA)) | signA;
}
return amod;
}
inline fn generic_fmod(comptime T: type, x: T, y: T) T {
@setRuntimeSafety(false);
const bits = @typeInfo(T).Float.bits;
const uint = std.meta.Int(.unsigned, bits);
const log2uint = math.Log2Int(uint);
comptime assert(T == f32 or T == f64);
const digits = if (T == f32) 23 else 52;
const exp_bits = if (T == f32) 9 else 12;
const bits_minus_1 = bits - 1;
const mask = if (T == f32) 0xff else 0x7ff;
var ux = @bitCast(uint, x);
var uy = @bitCast(uint, y);
var ex = @intCast(i32, (ux >> digits) & mask);
var ey = @intCast(i32, (uy >> digits) & mask);
const sx = if (T == f32) @intCast(u32, ux & 0x80000000) else @intCast(i32, ux >> bits_minus_1);
var i: uint = undefined;
if (uy << 1 == 0 or math.isNan(@bitCast(T, uy)) or ex == mask)
return (x * y) / (x * y);
if (ux << 1 <= uy << 1) {
if (ux << 1 == uy << 1)
return 0 * x;
return x;
}
// normalize x and y
if (ex == 0) {
i = ux << exp_bits;
while (i >> bits_minus_1 == 0) : ({
ex -= 1;
i <<= 1;
}) {}
ux <<= @intCast(log2uint, @bitCast(u32, -ex + 1));
} else {
ux &= math.maxInt(uint) >> exp_bits;
ux |= 1 << digits;
}
if (ey == 0) {
i = uy << exp_bits;
while (i >> bits_minus_1 == 0) : ({
ey -= 1;
i <<= 1;
}) {}
uy <<= @intCast(log2uint, @bitCast(u32, -ey + 1));
} else {
uy &= math.maxInt(uint) >> exp_bits;
uy |= 1 << digits;
}
// x mod y
while (ex > ey) : (ex -= 1) {
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
ux <<= 1;
}
i = ux -% uy;
if (i >> bits_minus_1 == 0) {
if (i == 0)
return 0 * x;
ux = i;
}
while (ux >> digits == 0) : ({
ux <<= 1;
ex -= 1;
}) {}
// scale result up
if (ex > 0) {
ux -%= 1 << digits;
ux |= @as(uint, @bitCast(u32, ex)) << digits;
} else {
ux >>= @intCast(log2uint, @bitCast(u32, -ex + 1));
}
if (T == f32) {
ux |= sx;
} else {
ux |= @intCast(uint, sx) << bits_minus_1;
}
return @bitCast(T, ux);
}
test "fmod, fmodf" {
inline for ([_]type{ f32, f64 }) |T| {
const nan_val = math.nan(T);
const inf_val = math.inf(T);
try std.testing.expect(math.isNan(generic_fmod(T, nan_val, 1.0)));
try std.testing.expect(math.isNan(generic_fmod(T, 1.0, nan_val)));
try std.testing.expect(math.isNan(generic_fmod(T, inf_val, 1.0)));
try std.testing.expect(math.isNan(generic_fmod(T, 0.0, 0.0)));
try std.testing.expect(math.isNan(generic_fmod(T, 1.0, 0.0)));
try std.testing.expectEqual(@as(T, 0.0), generic_fmod(T, 0.0, 2.0));
try std.testing.expectEqual(@as(T, -0.0), generic_fmod(T, -0.0, 2.0));
try std.testing.expectEqual(@as(T, -2.0), generic_fmod(T, -32.0, 10.0));
try std.testing.expectEqual(@as(T, -2.0), generic_fmod(T, -32.0, -10.0));
try std.testing.expectEqual(@as(T, 2.0), generic_fmod(T, 32.0, 10.0));
try std.testing.expectEqual(@as(T, 2.0), generic_fmod(T, 32.0, -10.0));
}
}
test {
_ = @import("fmodq_test.zig");
_ = @import("fmodx_test.zig");
}

View File

@ -1,126 +0,0 @@
const builtin = @import("builtin");
const std = @import("std");
// fmodq - floating modulo large, returns the remainder of division for f128 types
// Logic and flow heavily inspired by MUSL fmodl for 113 mantissa digits
pub fn fmodq(a: f128, b: f128) callconv(.C) f128 {
@setRuntimeSafety(builtin.is_test);
var amod = a;
var bmod = b;
const aPtr_u64 = @ptrCast([*]u64, &amod);
const bPtr_u64 = @ptrCast([*]u64, &bmod);
const aPtr_u16 = @ptrCast([*]u16, &amod);
const bPtr_u16 = @ptrCast([*]u16, &bmod);
const exp_and_sign_index = comptime switch (builtin.target.cpu.arch.endian()) {
.Little => 7,
.Big => 0,
};
const low_index = comptime switch (builtin.target.cpu.arch.endian()) {
.Little => 0,
.Big => 1,
};
const high_index = comptime switch (builtin.target.cpu.arch.endian()) {
.Little => 1,
.Big => 0,
};
const signA = aPtr_u16[exp_and_sign_index] & 0x8000;
var expA = @intCast(i32, (aPtr_u16[exp_and_sign_index] & 0x7fff));
var expB = @intCast(i32, (bPtr_u16[exp_and_sign_index] & 0x7fff));
// There are 3 cases where the answer is undefined, check for:
// - fmodq(val, 0)
// - fmodq(val, NaN)
// - fmodq(inf, val)
// The sign on checked values does not matter.
// Doing (a * b) / (a * b) procudes undefined results
// because the three cases always produce undefined calculations:
// - 0 / 0
// - val * NaN
// - inf / inf
if (b == 0 or std.math.isNan(b) or expA == 0x7fff) {
return (a * b) / (a * b);
}
// Remove the sign from both
aPtr_u16[exp_and_sign_index] = @bitCast(u16, @intCast(i16, expA));
bPtr_u16[exp_and_sign_index] = @bitCast(u16, @intCast(i16, expB));
if (amod <= bmod) {
if (amod == bmod) {
return 0 * a;
}
return a;
}
if (expA == 0) {
amod *= 0x1p120;
expA = @as(i32, aPtr_u16[exp_and_sign_index]) - 120;
}
if (expB == 0) {
bmod *= 0x1p120;
expB = @as(i32, bPtr_u16[exp_and_sign_index]) - 120;
}
// OR in extra non-stored mantissa digit
var highA: u64 = (aPtr_u64[high_index] & (std.math.maxInt(u64) >> 16)) | 1 << 48;
var highB: u64 = (bPtr_u64[high_index] & (std.math.maxInt(u64) >> 16)) | 1 << 48;
var lowA: u64 = aPtr_u64[low_index];
var lowB: u64 = bPtr_u64[low_index];
while (expA > expB) : (expA -= 1) {
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -%= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = 2 *% high + (low >> 63);
lowA = 2 *% low;
} else {
highA = 2 *% highA + (lowA >> 63);
lowA = 2 *% lowA;
}
}
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = high;
lowA = low;
}
while (highA >> 48 == 0) {
highA = 2 *% highA + (lowA >> 63);
lowA = 2 *% lowA;
expA = expA - 1;
}
// Overwrite the current amod with the values in highA and lowA
aPtr_u64[high_index] = highA;
aPtr_u64[low_index] = lowA;
// Combine the exponent with the sign, normalize if happend to be denormalized
if (expA <= 0) {
aPtr_u16[exp_and_sign_index] = @truncate(u16, @bitCast(u32, (expA +% 120))) | signA;
amod *= 0x1p-120;
} else {
aPtr_u16[exp_and_sign_index] = @truncate(u16, @bitCast(u32, expA)) | signA;
}
return amod;
}
test {
_ = @import("fmodq_test.zig");
}

View File

@ -1,24 +1,24 @@
const std = @import("std");
const fmodq = @import("fmodq.zig");
const fmod = @import("fmod.zig");
const testing = std.testing;
fn test_fmodq(a: f128, b: f128, exp: f128) !void {
const res = fmodq.fmodq(a, b);
const res = fmod.fmodq(a, b);
try testing.expect(exp == res);
}
fn test_fmodq_nans() !void {
try testing.expect(std.math.isNan(fmodq.fmodq(1.0, std.math.nan(f128))));
try testing.expect(std.math.isNan(fmodq.fmodq(1.0, -std.math.nan(f128))));
try testing.expect(std.math.isNan(fmodq.fmodq(std.math.nan(f128), 1.0)));
try testing.expect(std.math.isNan(fmodq.fmodq(-std.math.nan(f128), 1.0)));
try testing.expect(std.math.isNan(fmod.fmodq(1.0, std.math.nan(f128))));
try testing.expect(std.math.isNan(fmod.fmodq(1.0, -std.math.nan(f128))));
try testing.expect(std.math.isNan(fmod.fmodq(std.math.nan(f128), 1.0)));
try testing.expect(std.math.isNan(fmod.fmodq(-std.math.nan(f128), 1.0)));
}
fn test_fmodq_infs() !void {
try testing.expect(fmodq.fmodq(1.0, std.math.inf(f128)) == 1.0);
try testing.expect(fmodq.fmodq(1.0, -std.math.inf(f128)) == 1.0);
try testing.expect(std.math.isNan(fmodq.fmodq(std.math.inf(f128), 1.0)));
try testing.expect(std.math.isNan(fmodq.fmodq(-std.math.inf(f128), 1.0)));
try testing.expect(fmod.fmodq(1.0, std.math.inf(f128)) == 1.0);
try testing.expect(fmod.fmodq(1.0, -std.math.inf(f128)) == 1.0);
try testing.expect(std.math.isNan(fmod.fmodq(std.math.inf(f128), 1.0)));
try testing.expect(std.math.isNan(fmod.fmodq(-std.math.inf(f128), 1.0)));
}
test "fmodq" {

View File

@ -1,108 +0,0 @@
const builtin = @import("builtin");
const std = @import("std");
const math = std.math;
const normalize = @import("divdf3.zig").normalize;
// fmodx - floating modulo large, returns the remainder of division for f80 types
// Logic and flow heavily inspired by MUSL fmodl for 113 mantissa digits
pub fn fmodx(a: f80, b: f80) callconv(.C) f80 {
@setRuntimeSafety(builtin.is_test);
const T = f80;
const Z = std.meta.Int(.unsigned, @bitSizeOf(T));
const significandBits = math.floatMantissaBits(T);
const fractionalBits = math.floatFractionalBits(T);
const exponentBits = math.floatExponentBits(T);
const signBit = (@as(Z, 1) << (significandBits + exponentBits));
const maxExponent = ((1 << exponentBits) - 1);
var aRep = @bitCast(Z, a);
var bRep = @bitCast(Z, b);
const signA = aRep & signBit;
var expA = @intCast(i32, (@bitCast(Z, a) >> significandBits) & maxExponent);
var expB = @intCast(i32, (@bitCast(Z, b) >> significandBits) & maxExponent);
// There are 3 cases where the answer is undefined, check for:
// - fmodx(val, 0)
// - fmodx(val, NaN)
// - fmodx(inf, val)
// The sign on checked values does not matter.
// Doing (a * b) / (a * b) procudes undefined results
// because the three cases always produce undefined calculations:
// - 0 / 0
// - val * NaN
// - inf / inf
if (b == 0 or math.isNan(b) or expA == maxExponent) {
return (a * b) / (a * b);
}
// Remove the sign from both
aRep &= ~signBit;
bRep &= ~signBit;
if (aRep <= bRep) {
if (aRep == bRep) {
return 0 * a;
}
return a;
}
if (expA == 0) expA = normalize(f80, &aRep);
if (expB == 0) expB = normalize(f80, &bRep);
var highA: u64 = 0;
var highB: u64 = 0;
var lowA: u64 = @truncate(u64, aRep);
var lowB: u64 = @truncate(u64, bRep);
while (expA > expB) : (expA -= 1) {
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -%= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = 2 *% high + (low >> 63);
lowA = 2 *% low;
} else {
highA = 2 *% highA + (lowA >> 63);
lowA = 2 *% lowA;
}
}
var high = highA -% highB;
var low = lowA -% lowB;
if (lowA < lowB) {
high -%= 1;
}
if (high >> 63 == 0) {
if ((high | low) == 0) {
return 0 * a;
}
highA = high;
lowA = low;
}
while ((lowA >> fractionalBits) == 0) {
lowA = 2 *% lowA;
expA = expA - 1;
}
// Combine the exponent with the sign and significand, normalize if happened to be denormalized
if (expA < -fractionalBits) {
return @bitCast(T, signA);
} else if (expA <= 0) {
return @bitCast(T, (lowA >> @intCast(math.Log2Int(u64), 1 - expA)) | signA);
} else {
return @bitCast(T, lowA | (@as(Z, @intCast(u16, expA)) << significandBits) | signA);
}
}
test {
_ = @import("fmodx_test.zig");
}

View File

@ -1,24 +1,24 @@
const std = @import("std");
const fmodx = @import("fmodx.zig");
const fmod = @import("fmod.zig");
const testing = std.testing;
fn test_fmodx(a: f80, b: f80, exp: f80) !void {
const res = fmodx.fmodx(a, b);
const res = fmod.__fmodx(a, b);
try testing.expect(exp == res);
}
fn test_fmodx_nans() !void {
try testing.expect(std.math.isNan(fmodx.fmodx(1.0, std.math.nan(f80))));
try testing.expect(std.math.isNan(fmodx.fmodx(1.0, -std.math.nan(f80))));
try testing.expect(std.math.isNan(fmodx.fmodx(std.math.nan(f80), 1.0)));
try testing.expect(std.math.isNan(fmodx.fmodx(-std.math.nan(f80), 1.0)));
try testing.expect(std.math.isNan(fmod.__fmodx(1.0, std.math.nan(f80))));
try testing.expect(std.math.isNan(fmod.__fmodx(1.0, -std.math.nan(f80))));
try testing.expect(std.math.isNan(fmod.__fmodx(std.math.nan(f80), 1.0)));
try testing.expect(std.math.isNan(fmod.__fmodx(-std.math.nan(f80), 1.0)));
}
fn test_fmodx_infs() !void {
try testing.expect(fmodx.fmodx(1.0, std.math.inf(f80)) == 1.0);
try testing.expect(fmodx.fmodx(1.0, -std.math.inf(f80)) == 1.0);
try testing.expect(std.math.isNan(fmodx.fmodx(std.math.inf(f80), 1.0)));
try testing.expect(std.math.isNan(fmodx.fmodx(-std.math.inf(f80), 1.0)));
try testing.expect(fmod.__fmodx(1.0, std.math.inf(f80)) == 1.0);
try testing.expect(fmod.__fmodx(1.0, -std.math.inf(f80)) == 1.0);
try testing.expect(std.math.isNan(fmod.__fmodx(std.math.inf(f80), 1.0)));
try testing.expect(std.math.isNan(fmod.__fmodx(-std.math.inf(f80), 1.0)));
}
test "fmodx" {

View File

@ -0,0 +1,168 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/lnf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/ln.c
const std = @import("std");
const math = std.math;
const testing = std.testing;
pub fn __logh(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, logf(a));
}
pub fn logf(x_: f32) callconv(.C) f32 {
const ln2_hi: f32 = 6.9313812256e-01;
const ln2_lo: f32 = 9.0580006145e-06;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var ix = @bitCast(u32, x);
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
const dk = @intToFloat(f32, k);
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
}
pub fn log(x_: f64) callconv(.C) f64 {
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, ix) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
const dk = @intToFloat(f64, k);
return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
}
pub fn __logx(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, logq(a));
}
pub fn logq(a: f128) callconv(.C) f128 {
// TODO: more correct implementation
return log(@floatCast(f64, a));
}
test "ln32" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f32, logf(0.2), -1.609438, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(0.8923), -0.113953, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(1.5), 0.405465, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(37.45), 3.623007, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(89.123), 4.490017, epsilon));
try testing.expect(math.approxEqAbs(f32, logf(123123.234375), 11.720941, epsilon));
}
test "ln64" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f64, log(0.2), -1.609438, epsilon));
try testing.expect(math.approxEqAbs(f64, log(0.8923), -0.113953, epsilon));
try testing.expect(math.approxEqAbs(f64, log(1.5), 0.405465, epsilon));
try testing.expect(math.approxEqAbs(f64, log(37.45), 3.623007, epsilon));
try testing.expect(math.approxEqAbs(f64, log(89.123), 4.490017, epsilon));
try testing.expect(math.approxEqAbs(f64, log(123123.234375), 11.720941, epsilon));
}
test "ln32.special" {
try testing.expect(math.isPositiveInf(logf(math.inf(f32))));
try testing.expect(math.isNegativeInf(logf(0.0)));
try testing.expect(math.isNan(logf(-1.0)));
try testing.expect(math.isNan(logf(math.nan(f32))));
}
test "ln64.special" {
try testing.expect(math.isPositiveInf(log(math.inf(f64))));
try testing.expect(math.isNegativeInf(log(0.0)));
try testing.expect(math.isNan(log(-1.0)));
try testing.expect(math.isNan(log(math.nan(f64))));
}

View File

@ -0,0 +1,196 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log10.c
const std = @import("std");
const math = std.math;
const testing = std.testing;
const maxInt = std.math.maxInt;
pub fn __log10h(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, log10f(a));
}
pub fn log10f(x_: f32) callconv(.C) f32 {
const ivln10hi: f32 = 4.3432617188e-01;
const ivln10lo: f32 = -3.1689971365e-05;
const log10_2hi: f32 = 3.0102920532e-01;
const log10_2lo: f32 = 7.9034151668e-07;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
const dk = @intToFloat(f32, k);
return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
}
pub fn log10(x_: f64) callconv(.C) f64 {
const ivln10hi: f64 = 4.34294481878168880939e-01;
const ivln10lo: f64 = 2.50829467116452752298e-11;
const log10_2hi: f64 = 3.01029995663611771306e-01;
const log10_2lo: f64 = 3.69423907715893078616e-13;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f32);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
// val_hi + val_lo ~ log10(1 + f) + k * log10(2)
var val_hi = hi * ivln10hi;
const dk = @intToFloat(f64, k);
const y = dk * log10_2hi;
var val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
// Extra precision multiplication
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
pub fn __log10x(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, log10q(a));
}
pub fn log10q(a: f128) callconv(.C) f128 {
// TODO: more correct implementation
return log10(@floatCast(f64, a));
}
test "log10_32" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f32, log10f(0.2), -0.698970, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(0.8923), -0.049489, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(1.5), 0.176091, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(37.45), 1.573452, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(89.123), 1.94999, epsilon));
try testing.expect(math.approxEqAbs(f32, log10f(123123.234375), 5.09034, epsilon));
}
test "log10_64" {
const epsilon = 0.000001;
try testing.expect(math.approxEqAbs(f64, log10(0.2), -0.698970, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(0.8923), -0.049489, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(1.5), 0.176091, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(37.45), 1.573452, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(89.123), 1.94999, epsilon));
try testing.expect(math.approxEqAbs(f64, log10(123123.234375), 5.09034, epsilon));
}
test "log10_32.special" {
try testing.expect(math.isPositiveInf(log10f(math.inf(f32))));
try testing.expect(math.isNegativeInf(log10f(0.0)));
try testing.expect(math.isNan(log10f(-1.0)));
try testing.expect(math.isNan(log10f(math.nan(f32))));
}
test "log10_64.special" {
try testing.expect(math.isPositiveInf(log10(math.inf(f64))));
try testing.expect(math.isNegativeInf(log10(0.0)));
try testing.expect(math.isNan(log10(-1.0)));
try testing.expect(math.isNan(log10(math.nan(f64))));
}

View File

@ -0,0 +1,185 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
const maxInt = std.math.maxInt;
pub fn __log2h(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, log2f(a));
}
pub fn log2f(x_: f32) callconv(.C) f32 {
const ivln2hi: f32 = 1.4428710938e+00;
const ivln2lo: f32 = -1.7605285393e-04;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k);
}
pub fn log2(x_: f64) callconv(.C) f64 {
const ivln2hi: f64 = 1.44269504072144627571e+00;
const ivln2lo: f64 = 1.67517131648865118353e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
var val_hi = hi * ivln2hi;
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
// spadd(val_hi, val_lo, y)
const y = @intToFloat(f64, k);
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
pub fn __log2x(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, log2q(a));
}
pub fn log2q(a: f128) callconv(.C) f128 {
return math.log2(a);
}
test "log2_32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, log2f(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f32, log2f(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f32, log2f(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f32, log2f(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f32, log2f(123123.234375), 16.909744, epsilon));
}
test "log2_64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, log2(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f64, log2(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f64, log2(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f64, log2(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f64, log2(123123.234375), 16.909744, epsilon));
}
test "log2_32.special" {
try expect(math.isPositiveInf(log2f(math.inf(f32))));
try expect(math.isNegativeInf(log2f(0.0)));
try expect(math.isNan(log2f(-1.0)));
try expect(math.isNan(log2f(math.nan(f32))));
}
test "log2_64.special" {
try expect(math.isPositiveInf(log2(math.inf(f64))));
try expect(math.isNegativeInf(log2(0.0)));
try expect(math.isNan(log2(-1.0)));
try expect(math.isNan(log2(math.nan(f64))));
}

View File

@ -3,8 +3,8 @@
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/__rem_pio2.c
const std = @import("../std.zig");
const __rem_pio2_large = @import("__rem_pio2_large.zig").__rem_pio2_large;
const std = @import("std");
const rem_pio2_large = @import("rem_pio2_large.zig").rem_pio2_large;
const math = std.math;
const toint = 1.5 / math.floatEps(f64);
@ -82,10 +82,10 @@ fn medium(ix: u32, x: f64, y: *[2]f64) i32 {
// Returns the remainder of x rem pi/2 in y[0]+y[1]
//
// use __rem_pio2_large() for large x
// use rem_pio2_large() for large x
//
// caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
pub fn __rem_pio2(x: f64, y: *[2]f64) i32 {
pub fn rem_pio2(x: f64, y: *[2]f64) i32 {
var z: f64 = undefined;
var tx: [3]f64 = undefined;
var ty: [2]f64 = undefined;
@ -186,7 +186,7 @@ pub fn __rem_pio2(x: f64, y: *[2]f64) i32 {
while (tx[U(i)] == 0.0) {
i -= 1;
}
n = __rem_pio2_large(tx[0..], ty[0..], @intCast(i32, (ix >> 20)) - (0x3ff + 23), i + 1, 1);
n = rem_pio2_large(tx[0..], ty[0..], @intCast(i32, (ix >> 20)) - (0x3ff + 23), i + 1, 1);
if (sign) {
y[0] = -ty[0];
y[1] = -ty[1];

View File

@ -3,23 +3,22 @@
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/__rem_pio2_large.c
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const init_jk = [_]i32{ 3, 4, 4, 6 }; // initial value for jk
//
// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
//
// integer array, contains the (24*i)-th to (24*i+23)-th
// bit of 2/pi after binary point. The corresponding
// floating value is
//
// ipio2[i] * 2^(-24(i+1)).
//
// NB: This table must have at least (e0-3)/24 + jk terms.
// For quad precision (e0 <= 16360, jk = 6), this is 686.
///
/// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
///
/// integer array, contains the (24*i)-th to (24*i+23)-th
/// bit of 2/pi after binary point. The corresponding
/// floating value is
///
/// ipio2[i] * 2^(-24(i+1)).
///
/// NB: This table must have at least (e0-3)/24 + jk terms.
/// For quad precision (e0 <= 16360, jk = 6), this is 686.
const ipio2 = [_]i32{
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
@ -33,7 +32,6 @@ const ipio2 = [_]i32{
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
//#if LDBL_MAX_EXP > 1024
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
@ -137,9 +135,7 @@ const ipio2 = [_]i32{
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901,
0x8071E0,
//#endif
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
};
const PIo2 = [_]f64{
@ -157,109 +153,109 @@ fn U(x: anytype) usize {
return @intCast(usize, x);
}
// Returns the last three digits of N with y = x - N*pi/2 so that |y| < pi/2.
//
// The method is to compute the integer (mod 8) and fraction parts of
// (2/pi)*x without doing the full multiplication. In general we
// skip the part of the product that are known to be a huge integer (
// more accurately, = 0 mod 8 ). Thus the number of operations are
// independent of the exponent of the input.
//
// (2/pi) is represented by an array of 24-bit integers in ipio2[].
//
// Input parameters:
// x[] The input value (must be positive) is broken into nx
// pieces of 24-bit integers in double precision format.
// x[i] will be the i-th 24 bit of x. The scaled exponent
// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
// match x's up to 24 bits.
//
// Example of breaking a double positive z into x[0]+x[1]+x[2]:
// e0 = ilogb(z)-23
// z = scalbn(z,-e0)
// for i = 0,1,2
// x[i] = floor(z)
// z = (z-x[i])*2**24
//
//
// y[] ouput result in an array of double precision numbers.
// The dimension of y[] is:
// 24-bit precision 1
// 53-bit precision 2
// 64-bit precision 2
// 113-bit precision 3
// The actual value is the sum of them. Thus for 113-bit
// precison, one may have to do something like:
//
// long double t,w,r_head, r_tail;
// t = (long double)y[2] + (long double)y[1];
// w = (long double)y[0];
// r_head = t+w;
// r_tail = w - (r_head - t);
//
// e0 The exponent of x[0]. Must be <= 16360 or you need to
// expand the ipio2 table.
//
// nx dimension of x[]
//
// prec an integer indicating the precision:
// 0 24 bits (single)
// 1 53 bits (double)
// 2 64 bits (extended)
// 3 113 bits (quad)
//
// Here is the description of some local variables:
//
// jk jk+1 is the initial number of terms of ipio2[] needed
// in the computation. The minimum and recommended value
// for jk is 3,4,4,6 for single, double, extended, and quad.
// jk+1 must be 2 larger than you might expect so that our
// recomputation test works. (Up to 24 bits in the integer
// part (the 24 bits of it that we compute) and 23 bits in
// the fraction part may be lost to cancelation before we
// recompute.)
//
// jz local integer variable indicating the number of
// terms of ipio2[] used.
//
// jx nx - 1
//
// jv index for pointing to the suitable ipio2[] for the
// computation. In general, we want
// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
// is an integer. Thus
// e0-3-24*jv >= 0 or (e0-3)/24 >= jv
// Hence jv = max(0,(e0-3)/24).
//
// jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
//
// q[] double array with integral value, representing the
// 24-bits chunk of the product of x and 2/pi.
//
// q0 the corresponding exponent of q[0]. Note that the
// exponent for q[i] would be q0-24*i.
//
// PIo2[] double precision array, obtained by cutting pi/2
// into 24 bits chunks.
//
// f[] ipio2[] in floating point
//
// iq[] integer array by breaking up q[] in 24-bits chunk.
//
// fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
//
// ih integer. If >0 it indicates q[] is >= 0.5, hence
// it also indicates the *sign* of the result.
//
/// Returns the last three digits of N with y = x - N*pi/2 so that |y| < pi/2.
///
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
/// The method is to compute the integer (mod 8) and fraction parts of
/// (2/pi)*x without doing the full multiplication. In general we
/// skip the part of the product that are known to be a huge integer (
/// more accurately, = 0 mod 8 ). Thus the number of operations are
/// independent of the exponent of the input.
///
pub fn __rem_pio2_large(x: []f64, y: []f64, e0: i32, nx: i32, prec: usize) i32 {
/// (2/pi) is represented by an array of 24-bit integers in ipio2[].
///
/// Input parameters:
/// x[] The input value (must be positive) is broken into nx
/// pieces of 24-bit integers in double precision format.
/// x[i] will be the i-th 24 bit of x. The scaled exponent
/// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
/// match x's up to 24 bits.
///
/// Example of breaking a double positive z into x[0]+x[1]+x[2]:
/// e0 = ilogb(z)-23
/// z = scalbn(z,-e0)
/// for i = 0,1,2
/// x[i] = floor(z)
/// z = (z-x[i])*2**24
///
///
/// y[] ouput result in an array of double precision numbers.
/// The dimension of y[] is:
/// 24-bit precision 1
/// 53-bit precision 2
/// 64-bit precision 2
/// 113-bit precision 3
/// The actual value is the sum of them. Thus for 113-bit
/// precison, one may have to do something like:
///
/// long double t,w,r_head, r_tail;
/// t = (long double)y[2] + (long double)y[1];
/// w = (long double)y[0];
/// r_head = t+w;
/// r_tail = w - (r_head - t);
///
/// e0 The exponent of x[0]. Must be <= 16360 or you need to
/// expand the ipio2 table.
///
/// nx dimension of x[]
///
/// prec an integer indicating the precision:
/// 0 24 bits (single)
/// 1 53 bits (double)
/// 2 64 bits (extended)
/// 3 113 bits (quad)
///
/// Here is the description of some local variables:
///
/// jk jk+1 is the initial number of terms of ipio2[] needed
/// in the computation. The minimum and recommended value
/// for jk is 3,4,4,6 for single, double, extended, and quad.
/// jk+1 must be 2 larger than you might expect so that our
/// recomputation test works. (Up to 24 bits in the integer
/// part (the 24 bits of it that we compute) and 23 bits in
/// the fraction part may be lost to cancelation before we
/// recompute.)
///
/// jz local integer variable indicating the number of
/// terms of ipio2[] used.
///
/// jx nx - 1
///
/// jv index for pointing to the suitable ipio2[] for the
/// computation. In general, we want
/// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
/// is an integer. Thus
/// e0-3-24*jv >= 0 or (e0-3)/24 >= jv
/// Hence jv = max(0,(e0-3)/24).
///
/// jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
///
/// q[] double array with integral value, representing the
/// 24-bits chunk of the product of x and 2/pi.
///
/// q0 the corresponding exponent of q[0]. Note that the
/// exponent for q[i] would be q0-24*i.
///
/// PIo2[] double precision array, obtained by cutting pi/2
/// into 24 bits chunks.
///
/// f[] ipio2[] in floating point
///
/// iq[] integer array by breaking up q[] in 24-bits chunk.
///
/// fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
///
/// ih integer. If >0 it indicates q[] is >= 0.5, hence
/// it also indicates the *sign* of the result.
///
///
///
/// Constants:
/// The hexadecimal values are the intended ones for the following
/// constants. The decimal values may be used, provided that the
/// compiler will convert from decimal to binary accurately enough
/// to produce the hexadecimal values shown.
///
pub fn rem_pio2_large(x: []f64, y: []f64, e0: i32, nx: i32, prec: usize) i32 {
var jz: i32 = undefined;
var jx: i32 = undefined;
var jv: i32 = undefined;
@ -333,7 +329,7 @@ pub fn __rem_pio2_large(x: []f64, y: []f64, e0: i32, nx: i32, prec: usize) i32 {
// compute n
z = math.scalbn(z, q0); // actual value of z
z -= 8.0 * math.floor(z * 0.125); // trim off integer >= 8
z -= 8.0 * @floor(z * 0.125); // trim off integer >= 8
n = @floatToInt(i32, z);
z -= @intToFloat(f64, n);
ih = 0;

View File

@ -3,8 +3,8 @@
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/__rem_pio2f.c
const std = @import("../std.zig");
const __rem_pio2_large = @import("__rem_pio2_large.zig").__rem_pio2_large;
const std = @import("std");
const rem_pio2_large = @import("rem_pio2_large.zig").rem_pio2_large;
const math = std.math;
const toint = 1.5 / math.floatEps(f64);
@ -19,8 +19,8 @@ const pio2_1t = 1.58932547735281966916e-08; // 0x3E5110b4, 0x611A6263
// Returns the remainder of x rem pi/2 in *y
// use double precision for everything except passing x
// use __rem_pio2_large() for large x
pub fn __rem_pio2f(x: f32, y: *f64) i32 {
// use rem_pio2_large() for large x
pub fn rem_pio2f(x: f32, y: *f64) i32 {
var tx: [1]f64 = undefined;
var ty: [1]f64 = undefined;
var @"fn": f64 = undefined;
@ -60,7 +60,7 @@ pub fn __rem_pio2f(x: f32, y: *f64) i32 {
e0 = (ix >> 23) - (0x7f + 23); // e0 = ilogb(|x|)-23, positive
ui = ix - (e0 << 23);
tx[0] = @bitCast(f32, ui);
n = __rem_pio2_large(&tx, &ty, @intCast(i32, e0), 1, 0);
n = rem_pio2_large(&tx, &ty, @intCast(i32, e0), 1, 0);
if (sign) {
y.* = -ty[0];
return -n;

View File

@ -0,0 +1,169 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/roundf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/round.c
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
pub fn __roundh(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, roundf(x));
}
pub fn roundf(x_: f32) callconv(.C) f32 {
const f32_toint = 1.0 / math.floatEps(f32);
var x = x_;
const u = @bitCast(u32, x);
const e = (u >> 23) & 0xFF;
var y: f32 = undefined;
if (e >= 0x7F + 23) {
return x;
}
if (u >> 31 != 0) {
x = -x;
}
if (e < 0x7F - 1) {
math.doNotOptimizeAway(x + f32_toint);
return 0 * @bitCast(f32, u);
}
y = x + f32_toint - f32_toint - x;
if (y > 0.5) {
y = y + x - 1;
} else if (y <= -0.5) {
y = y + x + 1;
} else {
y = y + x;
}
if (u >> 31 != 0) {
return -y;
} else {
return y;
}
}
pub fn round(x_: f64) callconv(.C) f64 {
const f64_toint = 1.0 / math.floatEps(f64);
var x = x_;
const u = @bitCast(u64, x);
const e = (u >> 52) & 0x7FF;
var y: f64 = undefined;
if (e >= 0x3FF + 52) {
return x;
}
if (u >> 63 != 0) {
x = -x;
}
if (e < 0x3ff - 1) {
math.doNotOptimizeAway(x + f64_toint);
return 0 * @bitCast(f64, u);
}
y = x + f64_toint - f64_toint - x;
if (y > 0.5) {
y = y + x - 1;
} else if (y <= -0.5) {
y = y + x + 1;
} else {
y = y + x;
}
if (u >> 63 != 0) {
return -y;
} else {
return y;
}
}
pub fn __roundx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, roundq(x));
}
pub fn roundq(x_: f128) callconv(.C) f128 {
const f128_toint = 1.0 / math.floatEps(f128);
var x = x_;
const u = @bitCast(u128, x);
const e = (u >> 112) & 0x7FFF;
var y: f128 = undefined;
if (e >= 0x3FFF + 112) {
return x;
}
if (u >> 127 != 0) {
x = -x;
}
if (e < 0x3FFF - 1) {
math.doNotOptimizeAway(x + f128_toint);
return 0 * @bitCast(f128, u);
}
y = x + f128_toint - f128_toint - x;
if (y > 0.5) {
y = y + x - 1;
} else if (y <= -0.5) {
y = y + x + 1;
} else {
y = y + x;
}
if (u >> 127 != 0) {
return -y;
} else {
return y;
}
}
test "round32" {
try expect(roundf(1.3) == 1.0);
try expect(roundf(-1.3) == -1.0);
try expect(roundf(0.2) == 0.0);
try expect(roundf(1.8) == 2.0);
}
test "round64" {
try expect(round(1.3) == 1.0);
try expect(round(-1.3) == -1.0);
try expect(round(0.2) == 0.0);
try expect(round(1.8) == 2.0);
}
test "round128" {
try expect(roundq(1.3) == 1.0);
try expect(roundq(-1.3) == -1.0);
try expect(roundq(0.2) == 0.0);
try expect(roundq(1.8) == 2.0);
}
test "round32.special" {
try expect(roundf(0.0) == 0.0);
try expect(roundf(-0.0) == -0.0);
try expect(math.isPositiveInf(roundf(math.inf(f32))));
try expect(math.isNegativeInf(roundf(-math.inf(f32))));
try expect(math.isNan(roundf(math.nan(f32))));
}
test "round64.special" {
try expect(round(0.0) == 0.0);
try expect(round(-0.0) == -0.0);
try expect(math.isPositiveInf(round(math.inf(f64))));
try expect(math.isNegativeInf(round(-math.inf(f64))));
try expect(math.isNan(round(math.nan(f64))));
}
test "round128.special" {
try expect(roundq(0.0) == 0.0);
try expect(roundq(-0.0) == -0.0);
try expect(math.isPositiveInf(roundq(math.inf(f128))));
try expect(math.isNegativeInf(roundq(-math.inf(f128))));
try expect(math.isNan(roundq(math.nan(f128))));
}

View File

@ -3,31 +3,21 @@
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/sinf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/sin.c
//
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
const kernel = @import("__trig.zig");
const __rem_pio2 = @import("__rem_pio2.zig").__rem_pio2;
const __rem_pio2f = @import("__rem_pio2f.zig").__rem_pio2f;
const kernel = @import("trig.zig");
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
/// Returns the sine of the radian value x.
///
/// Special Cases:
/// - sin(+-0) = +-0
/// - sin(+-inf) = nan
/// - sin(nan) = nan
pub fn sin(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => sin32(x),
f64 => sin64(x),
else => @compileError("sin not implemented for " ++ @typeName(T)),
};
pub fn __sinh(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, sinf(x));
}
fn sin32(x: f32) f32 {
pub fn sinf(x: f32) callconv(.C) f32 {
// Small multiples of pi/2 rounded to double precision.
const s1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
const s2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
@ -73,7 +63,7 @@ fn sin32(x: f32) f32 {
}
var y: f64 = undefined;
const n = __rem_pio2f(x, &y);
const n = rem_pio2f(x, &y);
return switch (n & 3) {
0 => kernel.__sindf(y),
1 => kernel.__cosdf(y),
@ -82,7 +72,7 @@ fn sin32(x: f32) f32 {
};
}
fn sin64(x: f64) f64 {
pub fn sin(x: f64) callconv(.C) f64 {
var ix = @bitCast(u64, x) >> 32;
ix &= 0x7fffffff;
@ -102,7 +92,7 @@ fn sin64(x: f64) f64 {
}
var y: [2]f64 = undefined;
const n = __rem_pio2(x, &y);
const n = rem_pio2(x, &y);
return switch (n & 3) {
0 => kernel.__sin(y[0], y[1], 1),
1 => kernel.__cos(y[0], y[1]),
@ -111,58 +101,68 @@ fn sin64(x: f64) f64 {
};
}
test "math.sin" {
try expect(sin(@as(f32, 0.0)) == sin32(0.0));
try expect(sin(@as(f64, 0.0)) == sin64(0.0));
pub fn __sinx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, sinq(x));
}
pub fn sinq(x: f128) callconv(.C) f128 {
// TODO: more correct implementation
return sin(@floatCast(f64, x));
}
test "sin" {
try expect(sin(@as(f32, 0.0)) == sinf(0.0));
try expect(sin(@as(f64, 0.0)) == sin(0.0));
try expect(comptime (math.sin(@as(f64, 2))) == math.sin(@as(f64, 2)));
}
test "math.sin32" {
test "sin32" {
const epsilon = 0.00001;
try expect(math.approxEqAbs(f32, sin32(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, sin32(0.2), 0.198669, epsilon));
try expect(math.approxEqAbs(f32, sin32(0.8923), 0.778517, epsilon));
try expect(math.approxEqAbs(f32, sin32(1.5), 0.997495, epsilon));
try expect(math.approxEqAbs(f32, sin32(-1.5), -0.997495, epsilon));
try expect(math.approxEqAbs(f32, sin32(37.45), -0.246544, epsilon));
try expect(math.approxEqAbs(f32, sin32(89.123), 0.916166, epsilon));
try expect(math.approxEqAbs(f32, sinf(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, sinf(0.2), 0.198669, epsilon));
try expect(math.approxEqAbs(f32, sinf(0.8923), 0.778517, epsilon));
try expect(math.approxEqAbs(f32, sinf(1.5), 0.997495, epsilon));
try expect(math.approxEqAbs(f32, sinf(-1.5), -0.997495, epsilon));
try expect(math.approxEqAbs(f32, sinf(37.45), -0.246544, epsilon));
try expect(math.approxEqAbs(f32, sinf(89.123), 0.916166, epsilon));
}
test "math.sin64" {
test "sin64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, sin64(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, sin64(0.2), 0.198669, epsilon));
try expect(math.approxEqAbs(f64, sin64(0.8923), 0.778517, epsilon));
try expect(math.approxEqAbs(f64, sin64(1.5), 0.997495, epsilon));
try expect(math.approxEqAbs(f64, sin64(-1.5), -0.997495, epsilon));
try expect(math.approxEqAbs(f64, sin64(37.45), -0.246543, epsilon));
try expect(math.approxEqAbs(f64, sin64(89.123), 0.916166, epsilon));
try expect(math.approxEqAbs(f64, sin(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, sin(0.2), 0.198669, epsilon));
try expect(math.approxEqAbs(f64, sin(0.8923), 0.778517, epsilon));
try expect(math.approxEqAbs(f64, sin(1.5), 0.997495, epsilon));
try expect(math.approxEqAbs(f64, sin(-1.5), -0.997495, epsilon));
try expect(math.approxEqAbs(f64, sin(37.45), -0.246543, epsilon));
try expect(math.approxEqAbs(f64, sin(89.123), 0.916166, epsilon));
}
test "math.sin32.special" {
try expect(sin32(0.0) == 0.0);
try expect(sin32(-0.0) == -0.0);
try expect(math.isNan(sin32(math.inf(f32))));
try expect(math.isNan(sin32(-math.inf(f32))));
try expect(math.isNan(sin32(math.nan(f32))));
test "sin32.special" {
try expect(sinf(0.0) == 0.0);
try expect(sinf(-0.0) == -0.0);
try expect(math.isNan(sinf(math.inf(f32))));
try expect(math.isNan(sinf(-math.inf(f32))));
try expect(math.isNan(sinf(math.nan(f32))));
}
test "math.sin64.special" {
try expect(sin64(0.0) == 0.0);
try expect(sin64(-0.0) == -0.0);
try expect(math.isNan(sin64(math.inf(f64))));
try expect(math.isNan(sin64(-math.inf(f64))));
try expect(math.isNan(sin64(math.nan(f64))));
test "sin64.special" {
try expect(sin(0.0) == 0.0);
try expect(sin(-0.0) == -0.0);
try expect(math.isNan(sin(math.inf(f64))));
try expect(math.isNan(sin(-math.inf(f64))));
try expect(math.isNan(sin(math.nan(f64))));
}
test "math.sin32 #9901" {
test "sin32 #9901" {
const float = @bitCast(f32, @as(u32, 0b11100011111111110000000000000000));
_ = std.math.sin(float);
_ = sinf(float);
}
test "math.sin64 #9901" {
test "sin64 #9901" {
const float = @bitCast(f64, @as(u64, 0b1111111101000001000000001111110111111111100000000000000000000001));
_ = std.math.sin(float);
_ = sin(float);
}

View File

@ -0,0 +1,24 @@
pub fn __sincosh(a: f16, r_sin: *f16, r_cos: *f16) callconv(.C) void {
r_sin.* = @sin(a);
r_cos.* = @cos(a);
}
pub fn sincosf(a: f32, r_sin: *f32, r_cos: *f32) callconv(.C) void {
r_sin.* = @sin(a);
r_cos.* = @cos(a);
}
pub fn sincos(a: f64, r_sin: *f64, r_cos: *f64) callconv(.C) void {
r_sin.* = @sin(a);
r_cos.* = @cos(a);
}
pub fn __sincosx(a: f80, r_sin: *f80, r_cos: *f80) callconv(.C) void {
r_sin.* = @sin(a);
r_cos.* = @cos(a);
}
pub fn sincosq(a: f128, r_sin: *f128, r_cos: *f128) callconv(.C) void {
r_sin.* = @sin(a);
r_cos.* = @cos(a);
}

View File

@ -0,0 +1,284 @@
const std = @import("std");
const math = std.math;
pub fn __sqrth(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, sqrtf(x));
}
pub fn sqrtf(x: f32) callconv(.C) f32 {
const tiny: f32 = 1.0e-30;
const sign: i32 = @bitCast(i32, @as(u32, 0x80000000));
var ix: i32 = @bitCast(i32, x);
if ((ix & 0x7F800000) == 0x7F800000) {
return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan
}
// zero
if (ix <= 0) {
if (ix & ~sign == 0) {
return x; // sqrt (+-0) = +-0
}
if (ix < 0) {
return math.snan(f32);
}
}
// normalize
var m = ix >> 23;
if (m == 0) {
// subnormal
var i: i32 = 0;
while (ix & 0x00800000 == 0) : (i += 1) {
ix <<= 1;
}
m -= i - 1;
}
m -= 127; // unbias exponent
ix = (ix & 0x007FFFFF) | 0x00800000;
if (m & 1 != 0) { // odd m, double x to even
ix += ix;
}
m >>= 1; // m = [m / 2]
// sqrt(x) bit by bit
ix += ix;
var q: i32 = 0; // q = sqrt(x)
var s: i32 = 0;
var r: i32 = 0x01000000; // r = moving bit right -> left
while (r != 0) {
const t = s + r;
if (t <= ix) {
s = t + r;
ix -= t;
q += r;
}
ix += ix;
r >>= 1;
}
// floating add to find rounding direction
if (ix != 0) {
var z = 1.0 - tiny; // inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (z > 1.0) {
q += 2;
} else {
if (q & 1 != 0) {
q += 1;
}
}
}
}
ix = (q >> 1) + 0x3f000000;
ix += m << 23;
return @bitCast(f32, ix);
}
/// NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound
/// behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are
/// potentially some edge cases remaining that are not handled in the same way.
pub fn sqrt(x: f64) callconv(.C) f64 {
const tiny: f64 = 1.0e-300;
const sign: u32 = 0x80000000;
const u = @bitCast(u64, x);
var ix0 = @intCast(u32, u >> 32);
var ix1 = @intCast(u32, u & 0xFFFFFFFF);
// sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan
if (ix0 & 0x7FF00000 == 0x7FF00000) {
return x * x + x;
}
// sqrt(+-0) = +-0
if (x == 0.0) {
return x;
}
// sqrt(-ve) = snan
if (ix0 & sign != 0) {
return math.snan(f64);
}
// normalize x
var m = @intCast(i32, ix0 >> 20);
if (m == 0) {
// subnormal
while (ix0 == 0) {
m -= 21;
ix0 |= ix1 >> 11;
ix1 <<= 21;
}
// subnormal
var i: u32 = 0;
while (ix0 & 0x00100000 == 0) : (i += 1) {
ix0 <<= 1;
}
m -= @intCast(i32, i) - 1;
ix0 |= ix1 >> @intCast(u5, 32 - i);
ix1 <<= @intCast(u5, i);
}
// unbias exponent
m -= 1023;
ix0 = (ix0 & 0x000FFFFF) | 0x00100000;
if (m & 1 != 0) {
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
}
m >>= 1;
// sqrt(x) bit by bit
ix0 += ix0 + (ix1 >> 31);
ix1 = ix1 +% ix1;
var q: u32 = 0;
var q1: u32 = 0;
var s0: u32 = 0;
var s1: u32 = 0;
var r: u32 = 0x00200000;
var t: u32 = undefined;
var t1: u32 = undefined;
while (r != 0) {
t = s0 +% r;
if (t <= ix0) {
s0 = t + r;
ix0 -= t;
q += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
r = sign;
while (r != 0) {
t1 = s1 +% r;
t = s0;
if (t < ix0 or (t == ix0 and t1 <= ix1)) {
s1 = t1 +% r;
if (t1 & sign == sign and s1 & sign == 0) {
s0 += 1;
}
ix0 -= t;
if (ix1 < t1) {
ix0 -= 1;
}
ix1 = ix1 -% t1;
q1 += r;
}
ix0 = ix0 +% ix0 +% (ix1 >> 31);
ix1 = ix1 +% ix1;
r >>= 1;
}
// rounding direction
if (ix0 | ix1 != 0) {
var z = 1.0 - tiny; // raise inexact
if (z >= 1.0) {
z = 1.0 + tiny;
if (q1 == 0xFFFFFFFF) {
q1 = 0;
q += 1;
} else if (z > 1.0) {
if (q1 == 0xFFFFFFFE) {
q += 1;
}
q1 += 2;
} else {
q1 += q1 & 1;
}
}
}
ix0 = (q >> 1) + 0x3FE00000;
ix1 = q1 >> 1;
if (q & 1 != 0) {
ix1 |= 0x80000000;
}
// NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same
// behaviour at least.
var iix0 = @intCast(i32, ix0);
iix0 = iix0 +% (m << 20);
const uz = (@intCast(u64, iix0) << 32) | ix1;
return @bitCast(f64, uz);
}
pub fn __sqrtx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, sqrtq(x));
}
pub fn sqrtq(x: f128) callconv(.C) f128 {
// TODO: more correct implementation
return sqrt(@floatCast(f64, x));
}
test "sqrtf" {
const V = [_]f32{
0.0,
4.089288054930154,
7.538757127071935,
8.97780793672623,
5.304443821913729,
5.682408965311888,
0.5846878579110049,
3.650338664297043,
0.3178091951800732,
7.1505232436382835,
3.6589165881946464,
};
// Note that @sqrt will either generate the sqrt opcode (if supported by the
// target ISA) or a call to `sqrtf` otherwise.
for (V) |val|
try std.testing.expectEqual(@sqrt(val), sqrtf(val));
}
test "sqrtf special" {
try std.testing.expect(math.isPositiveInf(sqrtf(math.inf(f32))));
try std.testing.expect(sqrtf(0.0) == 0.0);
try std.testing.expect(sqrtf(-0.0) == -0.0);
try std.testing.expect(math.isNan(sqrtf(-1.0)));
try std.testing.expect(math.isNan(sqrtf(math.nan(f32))));
}
test "sqrt" {
const V = [_]f64{
0.0,
4.089288054930154,
7.538757127071935,
8.97780793672623,
5.304443821913729,
5.682408965311888,
0.5846878579110049,
3.650338664297043,
0.3178091951800732,
7.1505232436382835,
3.6589165881946464,
};
// Note that @sqrt will either generate the sqrt opcode (if supported by the
// target ISA) or a call to `sqrtf` otherwise.
for (V) |val|
try std.testing.expectEqual(@sqrt(val), sqrt(val));
}
test "sqrt special" {
try std.testing.expect(math.isPositiveInf(sqrt(math.inf(f64))));
try std.testing.expect(sqrt(0.0) == 0.0);
try std.testing.expect(sqrt(-0.0) == -0.0);
try std.testing.expect(math.isNan(sqrt(-1.0)));
try std.testing.expect(math.isNan(sqrt(math.nan(f64))));
}

View File

@ -5,30 +5,20 @@
// https://git.musl-libc.org/cgit/musl/tree/src/math/tan.c
// https://golang.org/src/math/tan.go
const std = @import("../std.zig");
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
const kernel = @import("__trig.zig");
const __rem_pio2 = @import("__rem_pio2.zig").__rem_pio2;
const __rem_pio2f = @import("__rem_pio2f.zig").__rem_pio2f;
const kernel = @import("trig.zig");
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
/// Returns the tangent of the radian value x.
///
/// Special Cases:
/// - tan(+-0) = +-0
/// - tan(+-inf) = nan
/// - tan(nan) = nan
pub fn tan(x: anytype) @TypeOf(x) {
const T = @TypeOf(x);
return switch (T) {
f32 => tan32(x),
f64 => tan64(x),
else => @compileError("tan not implemented for " ++ @typeName(T)),
};
pub fn __tanh(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, tanf(x));
}
fn tan32(x: f32) f32 {
pub fn tanf(x: f32) callconv(.C) f32 {
// Small multiples of pi/2 rounded to double precision.
const t1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
const t2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
@ -68,11 +58,11 @@ fn tan32(x: f32) f32 {
}
var y: f64 = undefined;
const n = __rem_pio2f(x, &y);
const n = rem_pio2f(x, &y);
return kernel.__tandf(y, n & 1 != 0);
}
fn tan64(x: f64) f64 {
pub fn tan(x: f64) callconv(.C) f64 {
var ix = @bitCast(u64, x) >> 32;
ix &= 0x7fffffff;
@ -92,49 +82,59 @@ fn tan64(x: f64) f64 {
}
var y: [2]f64 = undefined;
const n = __rem_pio2(x, &y);
const n = rem_pio2(x, &y);
return kernel.__tan(y[0], y[1], n & 1 != 0);
}
test "math.tan" {
try expect(tan(@as(f32, 0.0)) == tan32(0.0));
try expect(tan(@as(f64, 0.0)) == tan64(0.0));
pub fn __tanx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, tanq(x));
}
test "math.tan32" {
pub fn tanq(x: f128) callconv(.C) f128 {
// TODO: more correct implementation
return tan(@floatCast(f64, x));
}
test "tan" {
try expect(tan(@as(f32, 0.0)) == tanf(0.0));
try expect(tan(@as(f64, 0.0)) == tan(0.0));
}
test "tan32" {
const epsilon = 0.00001;
try expect(math.approxEqAbs(f32, tan32(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, tan32(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f32, tan32(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f32, tan32(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f32, tan32(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f32, tan32(89.123), 2.285852, epsilon));
try expect(math.approxEqAbs(f32, tanf(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, tanf(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f32, tanf(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f32, tanf(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f32, tanf(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f32, tanf(89.123), 2.285852, epsilon));
}
test "math.tan64" {
test "tan64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, tan64(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, tan64(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f64, tan64(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f64, tan64(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f64, tan64(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f64, tan64(89.123), 2.2858376, epsilon));
try expect(math.approxEqAbs(f64, tan(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, tan(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f64, tan(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f64, tan(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f64, tan(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f64, tan(89.123), 2.2858376, epsilon));
}
test "math.tan32.special" {
try expect(tan32(0.0) == 0.0);
try expect(tan32(-0.0) == -0.0);
try expect(math.isNan(tan32(math.inf(f32))));
try expect(math.isNan(tan32(-math.inf(f32))));
try expect(math.isNan(tan32(math.nan(f32))));
test "tan32.special" {
try expect(tanf(0.0) == 0.0);
try expect(tanf(-0.0) == -0.0);
try expect(math.isNan(tanf(math.inf(f32))));
try expect(math.isNan(tanf(-math.inf(f32))));
try expect(math.isNan(tanf(math.nan(f32))));
}
test "math.tan64.special" {
try expect(tan64(0.0) == 0.0);
try expect(tan64(-0.0) == -0.0);
try expect(math.isNan(tan64(math.inf(f64))));
try expect(math.isNan(tan64(-math.inf(f64))));
try expect(math.isNan(tan64(math.nan(f64))));
test "tan64.special" {
try expect(tan(0.0) == 0.0);
try expect(tan(-0.0) == -0.0);
try expect(math.isNan(tan(math.inf(f64))));
try expect(math.isNan(tan(-math.inf(f64))));
try expect(math.isNan(tan(math.nan(f64))));
}

View File

@ -8,41 +8,41 @@
// https://git.musl-libc.org/cgit/musl/tree/src/math/__tand.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/__tandf.c
// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
// Input x is assumed to be bounded by ~pi/4 in magnitude.
// Input y is the tail of x.
//
// Algorithm
// 1. Since cos(-x) = cos(x), we need only to consider positive x.
// 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
// 3. cos(x) is approximated by a polynomial of degree 14 on
// [0,pi/4]
// 4 14
// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
// where the remez error is
//
// | 2 4 6 8 10 12 14 | -58
// |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
// | |
//
// 4 6 8 10 12 14
// 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
// cos(x) ~ 1 - x*x/2 + r
// since cos(x+y) ~ cos(x) - sin(x)*y
// ~ cos(x) - x*y,
// a correction term is necessary in cos(x) and hence
// cos(x+y) = 1 - (x*x/2 - (r - x*y))
// For better accuracy, rearrange to
// cos(x+y) ~ w + (tmp + (r-x*y))
// where w = 1 - x*x/2 and tmp is a tiny correction term
// (1 - x*x/2 == w + tmp exactly in infinite precision).
// The exactness of w + tmp in infinite precision depends on w
// and tmp having the same precision as x. If they have extra
// precision due to compiler bugs, then the extra precision is
// only good provided it is retained in all terms of the final
// expression for cos(). Retention happens in all cases tested
// under FreeBSD, so don't pessimize things by forcibly clipping
// any extra precision in w.
/// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
/// Input x is assumed to be bounded by ~pi/4 in magnitude.
/// Input y is the tail of x.
///
/// Algorithm
/// 1. Since cos(-x) = cos(x), we need only to consider positive x.
/// 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
/// 3. cos(x) is approximated by a polynomial of degree 14 on
/// [0,pi/4]
/// 4 14
/// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
/// where the remez error is
///
/// | 2 4 6 8 10 12 14 | -58
/// |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
/// | |
///
/// 4 6 8 10 12 14
/// 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
/// cos(x) ~ 1 - x*x/2 + r
/// since cos(x+y) ~ cos(x) - sin(x)*y
/// ~ cos(x) - x*y,
/// a correction term is necessary in cos(x) and hence
/// cos(x+y) = 1 - (x*x/2 - (r - x*y))
/// For better accuracy, rearrange to
/// cos(x+y) ~ w + (tmp + (r-x*y))
/// where w = 1 - x*x/2 and tmp is a tiny correction term
/// (1 - x*x/2 == w + tmp exactly in infinite precision).
/// The exactness of w + tmp in infinite precision depends on w
/// and tmp having the same precision as x. If they have extra
/// precision due to compiler bugs, then the extra precision is
/// only good provided it is retained in all terms of the final
/// expression for cos(). Retention happens in all cases tested
/// under FreeBSD, so don't pessimize things by forcibly clipping
/// any extra precision in w.
pub fn __cos(x: f64, y: f64) f64 {
const C1 = 4.16666666666666019037e-02; // 0x3FA55555, 0x5555554C
const C2 = -1.38888888888741095749e-03; // 0xBF56C16C, 0x16C15177
@ -73,33 +73,33 @@ pub fn __cosdf(x: f64) f32 {
return @floatCast(f32, ((1.0 + z * C0) + w * C1) + (w * z) * r);
}
// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
// Input x is assumed to be bounded by ~pi/4 in magnitude.
// Input y is the tail of x.
// Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
//
// Algorithm
// 1. Since sin(-x) = -sin(x), we need only to consider positive x.
// 2. Callers must return sin(-0) = -0 without calling here since our
// odd polynomial is not evaluated in a way that preserves -0.
// Callers may do the optimization sin(x) ~ x for tiny x.
// 3. sin(x) is approximated by a polynomial of degree 13 on
// [0,pi/4]
// 3 13
// sin(x) ~ x + S1*x + ... + S6*x
// where
//
// |sin(x) 2 4 6 8 10 12 | -58
// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
// | x |
//
// 4. sin(x+y) = sin(x) + sin'(x')*y
// ~ sin(x) + (1-x*x/2)*y
// For better accuracy, let
// 3 2 2 2 2
// r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
// then 3 2
// sin(x) = x + (S1*x + (x *(r-y/2)+y))
/// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
/// Input x is assumed to be bounded by ~pi/4 in magnitude.
/// Input y is the tail of x.
/// Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
///
/// Algorithm
/// 1. Since sin(-x) = -sin(x), we need only to consider positive x.
/// 2. Callers must return sin(-0) = -0 without calling here since our
/// odd polynomial is not evaluated in a way that preserves -0.
/// Callers may do the optimization sin(x) ~ x for tiny x.
/// 3. sin(x) is approximated by a polynomial of degree 13 on
/// [0,pi/4]
/// 3 13
/// sin(x) ~ x + S1*x + ... + S6*x
/// where
///
/// |sin(x) 2 4 6 8 10 12 | -58
/// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
/// | x |
///
/// 4. sin(x+y) = sin(x) + sin'(x')*y
/// ~ sin(x) + (1-x*x/2)*y
/// For better accuracy, let
/// 3 2 2 2 2
/// r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
/// then 3 2
/// sin(x) = x + (S1*x + (x *(r-y/2)+y))
pub fn __sin(x: f64, y: f64, iy: i32) f64 {
const S1 = -1.66666666666666324348e-01; // 0xBFC55555, 0x55555549
const S2 = 8.33333333332248946124e-03; // 0x3F811111, 0x1110F8A6
@ -134,38 +134,38 @@ pub fn __sindf(x: f64) f32 {
return @floatCast(f32, (x + s * (S1 + z * S2)) + s * w * r);
}
// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
// Input x is assumed to be bounded by ~pi/4 in magnitude.
// Input y is the tail of x.
// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
//
// Algorithm
// 1. Since tan(-x) = -tan(x), we need only to consider positive x.
// 2. Callers must return tan(-0) = -0 without calling here since our
// odd polynomial is not evaluated in a way that preserves -0.
// Callers may do the optimization tan(x) ~ x for tiny x.
// 3. tan(x) is approximated by a odd polynomial of degree 27 on
// [0,0.67434]
// 3 27
// tan(x) ~ x + T1*x + ... + T13*x
// where
//
// |tan(x) 2 4 26 | -59.2
// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
// | x |
//
// Note: tan(x+y) = tan(x) + tan'(x)*y
// ~ tan(x) + (1+x*x)*y
// Therefore, for better accuracy in computing tan(x+y), let
// 3 2 2 2 2
// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
// then
// 3 2
// tan(x+y) = x + (T1*x + (x *(r+y)+y))
//
// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
/// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
/// Input x is assumed to be bounded by ~pi/4 in magnitude.
/// Input y is the tail of x.
/// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
///
/// Algorithm
/// 1. Since tan(-x) = -tan(x), we need only to consider positive x.
/// 2. Callers must return tan(-0) = -0 without calling here since our
/// odd polynomial is not evaluated in a way that preserves -0.
/// Callers may do the optimization tan(x) ~ x for tiny x.
/// 3. tan(x) is approximated by a odd polynomial of degree 27 on
/// [0,0.67434]
/// 3 27
/// tan(x) ~ x + T1*x + ... + T13*x
/// where
///
/// |tan(x) 2 4 26 | -59.2
/// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
/// | x |
///
/// Note: tan(x+y) = tan(x) + tan'(x)*y
/// ~ tan(x) + (1+x*x)*y
/// Therefore, for better accuracy in computing tan(x+y), let
/// 3 2 2 2 2
/// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
/// then
/// 3 2
/// tan(x+y) = x + (T1*x + (x *(r+y)+y))
///
/// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
/// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
/// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
pub fn __tan(x_: f64, y_: f64, odd: bool) f64 {
var x = x_;
var y = y_;

View File

@ -0,0 +1,124 @@
// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/truncf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/trunc.c
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
pub fn __trunch(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, truncf(x));
}
pub fn truncf(x: f32) callconv(.C) f32 {
const u = @bitCast(u32, x);
var e = @intCast(i32, ((u >> 23) & 0xFF)) - 0x7F + 9;
var m: u32 = undefined;
if (e >= 23 + 9) {
return x;
}
if (e < 9) {
e = 1;
}
m = @as(u32, math.maxInt(u32)) >> @intCast(u5, e);
if (u & m == 0) {
return x;
} else {
math.doNotOptimizeAway(x + 0x1p120);
return @bitCast(f32, u & ~m);
}
}
pub fn trunc(x: f64) callconv(.C) f64 {
const u = @bitCast(u64, x);
var e = @intCast(i32, ((u >> 52) & 0x7FF)) - 0x3FF + 12;
var m: u64 = undefined;
if (e >= 52 + 12) {
return x;
}
if (e < 12) {
e = 1;
}
m = @as(u64, math.maxInt(u64)) >> @intCast(u6, e);
if (u & m == 0) {
return x;
} else {
math.doNotOptimizeAway(x + 0x1p120);
return @bitCast(f64, u & ~m);
}
}
pub fn __truncx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, truncq(x));
}
pub fn truncq(x: f128) callconv(.C) f128 {
const u = @bitCast(u128, x);
var e = @intCast(i32, ((u >> 112) & 0x7FFF)) - 0x3FFF + 16;
var m: u128 = undefined;
if (e >= 112 + 16) {
return x;
}
if (e < 16) {
e = 1;
}
m = @as(u128, math.maxInt(u128)) >> @intCast(u7, e);
if (u & m == 0) {
return x;
} else {
math.doNotOptimizeAway(x + 0x1p120);
return @bitCast(f128, u & ~m);
}
}
test "trunc32" {
try expect(truncf(1.3) == 1.0);
try expect(truncf(-1.3) == -1.0);
try expect(truncf(0.2) == 0.0);
}
test "trunc64" {
try expect(trunc(1.3) == 1.0);
try expect(trunc(-1.3) == -1.0);
try expect(trunc(0.2) == 0.0);
}
test "trunc128" {
try expect(truncq(1.3) == 1.0);
try expect(truncq(-1.3) == -1.0);
try expect(truncq(0.2) == 0.0);
}
test "trunc32.special" {
try expect(truncf(0.0) == 0.0); // 0x3F800000
try expect(truncf(-0.0) == -0.0);
try expect(math.isPositiveInf(truncf(math.inf(f32))));
try expect(math.isNegativeInf(truncf(-math.inf(f32))));
try expect(math.isNan(truncf(math.nan(f32))));
}
test "trunc64.special" {
try expect(trunc(0.0) == 0.0);
try expect(trunc(-0.0) == -0.0);
try expect(math.isPositiveInf(trunc(math.inf(f64))));
try expect(math.isNegativeInf(trunc(-math.inf(f64))));
try expect(math.isNan(trunc(math.nan(f64))));
}
test "trunc128.special" {
try expect(truncq(0.0) == 0.0);
try expect(truncq(-0.0) == -0.0);
try expect(math.isPositiveInf(truncq(math.inf(f128))));
try expect(math.isNegativeInf(truncq(-math.inf(f128))));
try expect(math.isNan(truncq(math.nan(f128))));
}

View File

@ -265,7 +265,7 @@ pub fn expectApproxEqRel(expected: anytype, actual: @TypeOf(expected), tolerance
test "expectApproxEqRel" {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const eps_value = comptime math.epsilon(T);
const sqrt_eps_value = comptime math.sqrt(eps_value);
const sqrt_eps_value = comptime @sqrt(eps_value);
const pos_x: T = 12.0;
const pos_y: T = pos_x + 2 * eps_value;

View File

@ -14051,7 +14051,7 @@ fn zirFloatToInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!
const result_val = val.floatToInt(sema.arena, operand_ty, dest_ty, target) catch |err| switch (err) {
error.FloatCannotFit => {
return sema.fail(block, operand_src, "integer value {d} cannot be stored in type '{}'", .{
std.math.floor(val.toFloat(f64)),
@floor(val.toFloat(f64)),
dest_ty.fmt(sema.mod),
});
},
@ -18371,7 +18371,7 @@ fn coerce(
}
const result_val = val.floatToInt(sema.arena, inst_ty, dest_ty, target) catch |err| switch (err) {
error.FloatCannotFit => {
return sema.fail(block, inst_src, "integer value {d} cannot be stored in type '{}'", .{ std.math.floor(val.toFloat(f64)), dest_ty.fmt(sema.mod) });
return sema.fail(block, inst_src, "integer value {d} cannot be stored in type '{}'", .{ @floor(val.toFloat(f64)), dest_ty.fmt(sema.mod) });
},
else => |e| return e,
};

View File

@ -3998,7 +3998,7 @@ fn transFloatingLiteral(c: *Context, scope: *Scope, expr: *const clang.FloatingL
var dbl = expr.getValueAsApproximateDouble();
const is_negative = dbl < 0;
if (is_negative) dbl = -dbl;
const str = if (dbl == std.math.floor(dbl))
const str = if (dbl == @floor(dbl))
try std.fmt.allocPrint(c.arena, "{d}.0", .{dbl})
else
try std.fmt.allocPrint(c.arena, "{d}", .{dbl});

View File

@ -1155,6 +1155,7 @@ pub const Value = extern union {
16 => return floatWriteToMemory(f16, val.toFloat(f16), target, buffer),
32 => return floatWriteToMemory(f32, val.toFloat(f32), target, buffer),
64 => return floatWriteToMemory(f64, val.toFloat(f64), target, buffer),
80 => return floatWriteToMemory(f80, val.toFloat(f80), target, buffer),
128 => return floatWriteToMemory(f128, val.toFloat(f128), target, buffer),
else => unreachable,
},
@ -1379,25 +1380,21 @@ pub const Value = extern union {
}
fn floatWriteToMemory(comptime F: type, f: F, target: Target, buffer: []u8) void {
const endian = target.cpu.arch.endian();
if (F == f80) {
switch (target.cpu.arch) {
.i386, .x86_64 => {
const repr = std.math.break_f80(f);
std.mem.writeIntLittle(u64, buffer[0..8], repr.fraction);
std.mem.writeIntLittle(u16, buffer[8..10], repr.exp);
// TODO set the rest of the bytes to undefined. should we use 0xaa
// or is there a different way?
return;
},
else => {},
}
const repr = std.math.break_f80(f);
std.mem.writeInt(u64, buffer[0..8], repr.fraction, endian);
std.mem.writeInt(u16, buffer[8..10], repr.exp, endian);
// TODO set the rest of the bytes to undefined. should we use 0xaa
// or is there a different way?
return;
}
const Int = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = @typeInfo(F).Float.bits,
} });
const int = @bitCast(Int, f);
std.mem.writeInt(Int, buffer[0..@sizeOf(Int)], int, target.cpu.arch.endian());
std.mem.writeInt(Int, buffer[0..@sizeOf(Int)], int, endian);
}
fn floatReadFromMemory(comptime F: type, target: Target, buffer: []const u8) F {
@ -2869,9 +2866,7 @@ pub const Value = extern union {
16 => return Value.Tag.float_16.create(arena, @intToFloat(f16, x)),
32 => return Value.Tag.float_32.create(arena, @intToFloat(f32, x)),
64 => return Value.Tag.float_64.create(arena, @intToFloat(f64, x)),
// We can't lower this properly on non-x86 llvm backends yet
//80 => return Value.Tag.float_80.create(arena, @intToFloat(f80, x)),
80 => @panic("TODO f80 intToFloat"),
80 => return Value.Tag.float_80.create(arena, @intToFloat(f80, x)),
128 => return Value.Tag.float_128.create(arena, @intToFloat(f128, x)),
else => unreachable,
}
@ -2908,9 +2903,9 @@ pub const Value = extern union {
}
const isNegative = std.math.signbit(value);
value = std.math.fabs(value);
value = @fabs(value);
const floored = std.math.floor(value);
const floored = @floor(value);
var rational = try std.math.big.Rational.init(arena);
defer rational.deinit();
@ -2941,7 +2936,7 @@ pub const Value = extern union {
return 1;
}
const w_value = std.math.fabs(scalar);
const w_value = @fabs(scalar);
return @divFloor(@floatToInt(std.math.big.Limb, std.math.log2(w_value)), @typeInfo(std.math.big.Limb).Int.bits) + 1;
}
@ -3737,9 +3732,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @rem(lhs_val, rhs_val));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt __remx");
}
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @rem(lhs_val, rhs_val));
@ -3782,9 +3774,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @mod(lhs_val, rhs_val));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt __modx");
}
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @mod(lhs_val, rhs_val));
@ -4198,9 +4187,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, lhs_val / rhs_val);
},
80 => {
if (true) {
@panic("TODO implement compiler_rt __divxf3");
}
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, lhs_val / rhs_val);
@ -4255,9 +4241,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @divFloor(lhs_val, rhs_val));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt __floorx");
}
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @divFloor(lhs_val, rhs_val));
@ -4312,9 +4295,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @divTrunc(lhs_val, rhs_val));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt __truncx");
}
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, @divTrunc(lhs_val, rhs_val));
@ -4369,9 +4349,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, lhs_val * rhs_val);
},
80 => {
if (true) {
@panic("TODO implement compiler_rt __mulxf3");
}
const lhs_val = lhs.toFloat(f80);
const rhs_val = rhs.toFloat(f80);
return Value.Tag.float_80.create(arena, lhs_val * rhs_val);
@ -4411,16 +4388,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @sqrt(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt __sqrtx");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @sqrt(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt sqrtq");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @sqrt(f));
},
@ -4454,16 +4425,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @sin(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt sin for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @sin(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt sin for f128");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @sin(f));
},
@ -4497,16 +4462,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @cos(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt cos for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @cos(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt cos for f128");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @cos(f));
},
@ -4540,16 +4499,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @exp(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt exp for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @exp(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt exp for f128");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @exp(f));
},
@ -4583,16 +4536,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @exp2(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt exp2 for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @exp2(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt exp2 for f128");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @exp2(f));
},
@ -4626,16 +4573,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @log(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt log for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @log(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt log for f128");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @log(f));
},
@ -4669,16 +4610,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @log2(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt log2 for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @log2(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt log2 for f128");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @log2(f));
},
@ -4712,16 +4647,10 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @log10(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt log10 for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @log10(f));
},
128 => {
if (true) {
@panic("TODO implement compiler_rt log10 for f128");
}
const f = val.toFloat(f128);
return Value.Tag.float_128.create(arena, @log10(f));
},
@ -4755,9 +4684,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @fabs(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt fabs for f80 (__fabsx)");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @fabs(f));
},
@ -4795,9 +4721,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @floor(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt floor for f80 (__floorx)");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @floor(f));
},
@ -4835,9 +4758,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @ceil(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt ceil for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @ceil(f));
},
@ -4875,9 +4795,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @round(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt round for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @round(f));
},
@ -4915,9 +4832,6 @@ pub const Value = extern union {
return Value.Tag.float_64.create(arena, @trunc(f));
},
80 => {
if (true) {
@panic("TODO implement compiler_rt trunc for f80");
}
const f = val.toFloat(f80);
return Value.Tag.float_80.create(arena, @trunc(f));
},

View File

@ -6,6 +6,7 @@ const expectEqualSlices = std.testing.expectEqualSlices;
const maxInt = std.math.maxInt;
const minInt = std.math.minInt;
const mem = std.mem;
const math = std.math;
test "assignment operators" {
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
@ -947,13 +948,13 @@ fn frem(comptime T: type) !void {
else => unreachable,
};
try expect(std.math.fabs(@rem(@as(T, 6.9), @as(T, 4.0)) - @as(T, 2.9)) < epsilon);
try expect(std.math.fabs(@rem(@as(T, -6.9), @as(T, 4.0)) - @as(T, -2.9)) < epsilon);
try expect(std.math.fabs(@rem(@as(T, -5.0), @as(T, 3.0)) - @as(T, -2.0)) < epsilon);
try expect(std.math.fabs(@rem(@as(T, 3.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(std.math.fabs(@rem(@as(T, 1.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(std.math.fabs(@rem(@as(T, 0.0), @as(T, 1.0)) - @as(T, 0.0)) < epsilon);
try expect(std.math.fabs(@rem(@as(T, -0.0), @as(T, 1.0)) - @as(T, -0.0)) < epsilon);
try expect(@fabs(@rem(@as(T, 6.9), @as(T, 4.0)) - @as(T, 2.9)) < epsilon);
try expect(@fabs(@rem(@as(T, -6.9), @as(T, 4.0)) - @as(T, -2.9)) < epsilon);
try expect(@fabs(@rem(@as(T, -5.0), @as(T, 3.0)) - @as(T, -2.0)) < epsilon);
try expect(@fabs(@rem(@as(T, 3.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(@fabs(@rem(@as(T, 1.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(@fabs(@rem(@as(T, 0.0), @as(T, 1.0)) - @as(T, 0.0)) < epsilon);
try expect(@fabs(@rem(@as(T, -0.0), @as(T, 1.0)) - @as(T, -0.0)) < epsilon);
}
test "float modulo division using @mod" {
@ -978,13 +979,13 @@ fn fmod(comptime T: type) !void {
else => unreachable,
};
try expect(std.math.fabs(@mod(@as(T, 6.9), @as(T, 4.0)) - @as(T, 2.9)) < epsilon);
try expect(std.math.fabs(@mod(@as(T, -6.9), @as(T, 4.0)) - @as(T, 1.1)) < epsilon);
try expect(std.math.fabs(@mod(@as(T, -5.0), @as(T, 3.0)) - @as(T, 1.0)) < epsilon);
try expect(std.math.fabs(@mod(@as(T, 3.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(std.math.fabs(@mod(@as(T, 1.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(std.math.fabs(@mod(@as(T, 0.0), @as(T, 1.0)) - @as(T, 0.0)) < epsilon);
try expect(std.math.fabs(@mod(@as(T, -0.0), @as(T, 1.0)) - @as(T, -0.0)) < epsilon);
try expect(@fabs(@mod(@as(T, 6.9), @as(T, 4.0)) - @as(T, 2.9)) < epsilon);
try expect(@fabs(@mod(@as(T, -6.9), @as(T, 4.0)) - @as(T, 1.1)) < epsilon);
try expect(@fabs(@mod(@as(T, -5.0), @as(T, 3.0)) - @as(T, 1.0)) < epsilon);
try expect(@fabs(@mod(@as(T, 3.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(@fabs(@mod(@as(T, 1.0), @as(T, 2.0)) - @as(T, 1.0)) < epsilon);
try expect(@fabs(@mod(@as(T, 0.0), @as(T, 1.0)) - @as(T, 0.0)) < epsilon);
try expect(@fabs(@mod(@as(T, -0.0), @as(T, 1.0)) - @as(T, -0.0)) < epsilon);
}
test "@sqrt" {
@ -1288,8 +1289,8 @@ test "NaN comparison f80" {
}
fn testNanEqNan(comptime F: type) !void {
var nan1 = std.math.nan(F);
var nan2 = std.math.nan(F);
var nan1 = math.nan(F);
var nan2 = math.nan(F);
try expect(nan1 != nan2);
try expect(!(nan1 == nan2));
try expect(!(nan1 > nan2));
@ -1346,3 +1347,40 @@ test "signed zeros are represented properly" {
try S.doTheTest();
comptime try S.doTheTest();
}
test "comptime sin and ln" {
const v = comptime (@sin(@as(f32, 1)) + @log(@as(f32, 5)));
try expect(v == @sin(@as(f32, 1)) + @log(@as(f32, 5)));
}
test "fabs" {
inline for ([_]type{ f16, f32, f64, f80, f128, c_longdouble }) |T| {
// normals
try expect(@fabs(@as(T, 1.0)) == 1.0);
try expect(@fabs(@as(T, -1.0)) == 1.0);
try expect(@fabs(math.floatMin(T)) == math.floatMin(T));
try expect(@fabs(-math.floatMin(T)) == math.floatMin(T));
try expect(@fabs(math.floatMax(T)) == math.floatMax(T));
try expect(@fabs(-math.floatMax(T)) == math.floatMax(T));
// subnormals
try expect(@fabs(@as(T, 0.0)) == 0.0);
try expect(@fabs(@as(T, -0.0)) == 0.0);
try expect(@fabs(math.floatTrueMin(T)) == math.floatTrueMin(T));
try expect(@fabs(-math.floatTrueMin(T)) == math.floatTrueMin(T));
// non-finite numbers
try expect(math.isPositiveInf(@fabs(math.inf(T))));
try expect(math.isPositiveInf(@fabs(-math.inf(T))));
try expect(math.isNan(@fabs(math.nan(T))));
}
}
test "absFloat" {
try testAbsFloat();
comptime try testAbsFloat();
}
fn testAbsFloat() !void {
try expect(@fabs(@as(f32, -10.05)) == @as(f32, 10.05));
try expect(@fabs(@as(f32, 10.05)) == @as(f32, 10.05));
}