Just like for Struct in 8238d4b33585a715c58ab559cd001dd3ea1db55b, in the
case of ErrorUnion struct we need to return a compound literal "(T){...}"
instead of just "{}", which is invalid code when used in e.g. a "return"
expression.
* Sema: Correctly determine whether array_cat lhs and rhs are single ptrs
Many-pointers are also not single-pointers and wouldn't be considered
here. This commit makes the conditions use the appropriately-named
isSinglePointer instead.
* Sema: Correctly obtain ArrayInfo for many-pointer concatenation
Many-pointers at comptime have a known size like slices and can be used
in array concatenation. This fixes a stage1 regression.
* test: Add comptime manyptr concatenation test
Co-authored-by: sin-ack <sin-ack@users.noreply.github.com>
This is to account for the small differences in math functions of
different libcs. For example, if the compiler links against glibc,
but the target is musl libc, then these values might be
slightly different.
Arguably, this is a bug in the compiler because comptime should
emulate the target, including rounding errors in libc math
functions. However that behavior is not what this particular test
is intended to cover.
The reason for having `@tan` is that we already have `@sin` and `@cos`
because some targets have machine code instructions for them, but in the
case that the implementation needs to go into compiler-rt, sin, cos, and
tan all share a common dependency which includes a table of data. To
avoid duplicating this table of data, we promote tan to become a builtin
alongside sin and cos.
ZIR: The tag enum is at capacity so this commit moves
`field_call_bind_named` to be `extended`. I measured this as one of
the least used tags in the zig codebase.
Fix libc math suffix for `f32` being wrong in both stage1 and stage2.
stage1: add missing libc prefix for float functions.
* unify the logic for exporting math functions from compiler-rt,
with the appropriate suffixes and prefixes.
- add all missing f128 and f80 exports. Functions with missing
implementations call other functions and have TODO comments.
- also add f16 functions
* move math functions from freestanding libc to compiler-rt (#7265)
* enable all the f128 and f80 code in the stage2 compiler and behavior
tests (#11161).
* update std lib to use builtins rather than `std.math`.
Split big test into the two separate things it is testing.
Add missing checks to the test which revealed the test is not actually
passing yet for the C backend.
According to Apple docs, the long double type is a double precision
IEEE754 binary floating-point type, which makes it identical to the
double type. This behavior contrasts to the standard specification,
in which a long double is a quad-precision, IEEE754 binary,
floating-point type.
Thus, we need to take this into account when using the compiler
intrinsics so that we select the correct function version for
FloatMulAdd.
* The `@bitCast` workaround is removed in favor of `@ptrCast` properly
doing element casting for slice element types. This required an
enhancement both to stage1 and stage2.
* stage1 incorrectly accepts `.{}` instead of `{}`. stage2 code that
abused this is fixed.
* Make some parameters comptime to support functions in switch
expressions (as opposed to making them function pointers).
* Avoid relying on local temporaries being mutable.
* Workarounds for when stage1 and stage2 disagree on function pointer
types.
* Workaround recursive formatting bug with a `@panic("TODO")`.
* Remove unreachable `else` prongs for some inferred error sets.
All in effort towards #89.
The problem was that types of non-anytype parameters were being included
as part of the check to see if generic function instantiations were
equal. Now, Module.Fn additionally stores the information for whether each
parameter is anytype or not. `generic_poison` cannot be used to signal
this because the type is still needed for comptime arguments; in such
case the type will not be present in the newly generated function
prototype.
This presented one additional challenge: we need to compare equality of
two values where one of them is post-coercion and the other is not. So
we make some minor adjustments to `Type.eql` to support this. I think
this small complexity tradeoff is worth it because it means the compiler
does much less work on the hot path that a generic function is called
and there is already an existing matching instantiation.
closes#11146
Prior to this, Liveness encoded `asm`, `call`, and `aggregate_init` with
a single 32-bit integer, allowing up to 35 operands (3 are provided by
the regular tomb_bits). However, the Zig language allows function calls
with more than 35 arguments, inline assembly with more than 35 inputs,
and anonymous tuples with more than 35 elements.
The new encoding stores an index to the extra array instead of the bits
directly, and then as many extra elements as needed to encode all the
operands. The MSB is used as a flag to tell which element is the last
one, allowing for 31 bits per element.
Prior to this, print_air did not bother correctly printing tombstones
for these instructions; now it does.
In addition to updating the BigTomb iteration logic in the machine code
backends, this commit extracts the common logic into the Liveness namespace.
I forgot to check that the new behavior tests also pass in stage1. One
of them does not.
Fixes regression from 4618c41fa6ca70f06c7e65762d2f38d57b00818c.
This shuffles some tests do ensure the new instructions are tested for the wasm backend,
by moving vectors into their own tests as well as move the f16 test cases as those require
special operating also.
Sema avoids adding map entries for certain instructions such as
`set_eval_branch_quota` and `atomic_store`. This means that result
location semantics in AstGen must not emit any instructions that attempt
to use the result of any of these instructions.
This commit makes AstGen replace such instructions with
`Zir.Inst.Ref.void_value` if their result value ends up being
referenced.
This fixes a compiler crash when running std lib atomic tests.