This change is seemingly insignificant but I actually agonized over this
for three days. Some other things I considered:
* (status quo in master branch) make Compile step creation functions
accept a Target.Query and delete the ResolvedTarget struct.
- downside: redundantly resolve target queries many times
* same as before but additionally add a hash map to cache target query
resolutions.
- downside: now there is a hash map that doesn't actually need to
exist, just to make the API more ergonomic.
* add is_native_os and is_native_abi fields to std.Target and use it
directly as the result of resolving a target query.
- downside: they really don't belong there. They would be available
as comptime booleans via `@import("builtin")` but they should not
be exposed that way.
With this change the downsides are:
* the option name of addExecutable and friends is `target` instead of
`resolved_target` matching the type name.
- upside: this does not break compatibility with existing build
scripts
* you likely end up seeing `target.result.cpu.arch` rather than
`target.cpu.arch`.
- upside: this is an improvement over `target.target.cpu.arch` which
it was before this commit.
- downside: `b.host.target` is now `b.host.result`.
Introduce the concept of "target query" and "resolved target". A target
query is what the user specifies, with some things left to default. A
resolved target has the default things discovered and populated.
In the future, std.zig.CrossTarget will be rename to std.Target.Query.
Introduces `std.Build.resolveTargetQuery` to get from one to the other.
The concept of `main_mod_path` is gone, no longer supported. You have to
put the root source file at the module root now.
* remove deprecated API
* update build.zig for the breaking API changes in this branch
* move std.Build.Step.Compile.BuildId to std.zig.BuildId
* add more options to std.Build.ExecutableOptions, std.Build.ObjectOptions,
std.Build.SharedLibraryOptions, std.Build.StaticLibraryOptions, and
std.Build.TestOptions.
* remove `std.Build.constructCMacro`. There is no use for this API.
* deprecate `std.Build.Step.Compile.defineCMacro`. Instead,
`std.Build.Module.addCMacro` is provided.
- remove `std.Build.Step.Compile.defineCMacroRaw`.
* deprecate `std.Build.Step.Compile.linkFrameworkNeeded`
- use `std.Build.Module.linkFramework`
* deprecate `std.Build.Step.Compile.linkFrameworkWeak`
- use `std.Build.Module.linkFramework`
* move more logic into `std.Build.Module`
* allow `target` and `optimize` to be `null` when creating a Module.
Along with other fields, those unspecified options will be inherited
from parent `Module` when inserted into an import table.
* the `target` field of `addExecutable` is now required. pass `b.host`
to get the host target.
This moves many settings from `std.Build.Step.Compile` and into
`std.Build.Module`, and then makes them transitive.
In other words, it adds support for exposing Zig modules in packages,
which are configured in various ways, such as depending on other link
objects, include paths, or even a different optimization mode.
Now, transitive dependencies will be included in the compilation, so you
can, for example, make a Zig module depend on some C source code, and
expose that Zig module in a package.
Currently, the compiler frontend autogenerates only one
`@import("builtin")` module for the entire compilation, however, a
future enhancement will be to make it honor the differences in modules,
so that modules can be compiled with different optimization modes, code
model, valgrind integration, or even target CPU feature set.
closes#14719
This updates all linker tests to include `no_entry` as well as changes
all tests to executable so they do not need to be updated later when
the in-house WebAssembly linker supports dynamic libraries.
This adds support for the `-fno-entry` and `-fentry` flags respectively, for
zig build-{exe/lib} and the build system. For `zig cc` we use the `--no-entry`
flag to be compatible with clang and existing tooling.
In `start.zig` we now make the main function optional when the target is
WebAssembly, as to allow for the build-exe command in combination with
`-fno-entry`.
When the execution model is set, and is set to 'reactor', we now verify
when an entry name is given it matches what is expected. When no entry
point is given, we set it to `_initialize` by default. This means the user
will also be met with an error when they use the reactor model, but did
not provide the correct function.
Justification: exec, execv etc are unix concepts and portable version
should be called differently.
Do no touch non-Zig code. Adjust error names as well, if associated.
Closes#5853.
An embedded manifest file is really just XML data embedded as a RT_MANIFEST resource (ID = 24). Typically, the Windows-only 'Manifest Tool' (`mt.exe`) is used to embed manifest files, and `mt.exe` also seems to perform some transformation of the manifest data before embedding, but in testing it doesn't seem like the transformations are necessary to get the intended result.
So, to handle embedding manifest files, Zig now takes the following approach:
- Generate a .rc file with the contents `1 24 "path-to-manifest.manifest"`
- Compile that generated .rc file into a .res file
- Link the .res file into the final binary
This effectively achieves the same thing as `mt.exe` minus the validation/transformations of the XML data that it performs.
How this is used:
On the command line:
```
zig build-exe main.zig main.manifest
```
(on the command line, specifying a .manifest file when the target object format is not COFF is an error)
or in build.zig:
```
const exe = b.addExecutable(.{
.name = "manifest-test",
.root_source_file = .{ .path = "main.zig" },
.target = target,
.optimize = optimize,
.win32_manifest = .{ .path = "main.manifest" },
});
```
(in build.zig, the manifest file is ignored if the target object format is not COFF)
Note: Currently, only one manifest file can be specified per compilation. This is because the ID of the manifest resource is currently always 1. Specifying multiple manifests could be supported if a way for the user to specify an ID for each manifest is added (manifest IDs must be a u16).
Closes#17406
options
* start renaming "package" to "module" (see #14307)
- build system gains `main_mod_path` and `main_pkg_path` is still
there but it is deprecated.
* eliminate the object-oriented memory management style of what was
previously `*Package`. Now it is `*Package.Module` and all pointers
point to externally managed memory.
* fixes to get the new Fetch.zig code working. The previous commit was
work-in-progress. There are still two commented out code paths, the
one that leads to `Compilation.create` and the one for `zig build`
that fetches the entire dependency tree and creates the required
modules for the build runner.
The include directories used when preprocessing .rc files are now separate from the target, and by default will use the system MSVC include paths if the MSVC + Windows SDK are present, otherwise it will fall back to the MinGW includes distributed with Zig. This default behavior can be overridden by the `-rcincludes` option (possible values: any (the default), msvc, gnu, or none).
This behavior is useful because Windows resource files may `#include` files that only exist with in the MSVC include dirs (e.g. in `<MSVC install directory>/atlmfc/include` which can contain other .rc files, images, icons, cursors, etc). So, by defaulting to the `any` behavior (MSVC if present, MinGW fallback), users will by default get behavior that is most-likely-to-work.
It also should be okay that the include directories used when compiling .rc files differ from the include directories used when compiling the main binary, since the .res format is not dependent on anything ABI-related. The only relevant differences would be things like `#define` constants being different values in the MinGW headers vs the MSVC headers, but any such differences would likely be a MinGW bug.
Prior to this change, we would unconditionally emit any system include path/framework
path as `-iwithsysroot`/`-iframeworkwithsysroot` if the sysroot was
set which can lead to unexpected build failures. Now, calls to
`b.addSystemIncludePath` and `b.addFrameworkPath` will always emit
search paths as `-isystem`/`-iframework`. As a result, it is now up to
the user to correctly concat the search paths with the sysroot when
and where desired.
If there is a need for emitting `-iwithsysroot`/`-iframeworkwithsysroot`
I would advise adding explicit hooks such as `addSystemIncludePathWithSysroot`
and `addFrameworkPathWithSysroot`.
Without duping, users could get some unexpected behavior if they used a
string with a lifetime that didn't persist throughout the full build,
i.e. if it wasn't heap allocated, or if it was explicitly freed.
* introduce LazyPath.cwd_relative variant and use it for --zig-lib-dir. closes#12685
* move overrideZigLibDir and setMainPkgPath to options fields set once
and then never mutated.
* avoid introducing Build/util.zig
* use doc comments for deprecation notices so that they show up in
generated documentation.
* introduce InstallArtifact.Options, accept it as a parameter to
addInstallArtifact, and move override_dest_dir into it. Instead of
configuring the installation via Compile step, configure the
installation via the InstallArtifact step. In retrospect this is
obvious.
* remove calls to pushInstalledFile in InstallArtifact. See #14943
* rewrite InstallArtifact to not incorrectly observe whether a Compile
step has any generated outputs. InstallArtifact is meant to trigger
output generation.
* fix child process evaluation code handling of `-fno-emit-bin`.
* don't store out_h_filename, out_ll_filename, etc., pointlessly. these
are all just simple extensions appended to the root name.
* make emit_directory optional. It's possible to have nothing outputted,
for example, if you're just type-checking.
* avoid passing -femit-foo/-fno-emit-foo when it is the default
* rename ConfigHeader.getTemplate to getOutput
* deprecate addOptionArtifact
* update the random number seed of Options step caching.
* avoid using `inline for` pointlessly
* avoid using `override_Dest_dir` pointlessly
* avoid emitting an executable pointlessly in test cases
Removes forceBuild and forceEmit. Let's consider these additions separately.
Nearly all of the usage sites were suspicious.
Specifically this is to make sure llvm data layout generation doesn't
regress. The no emit bin is to allow testing targets that can't
currently be linked. The commented out targets are ones that fail in
the linker anyway when no emit bin is passed.
* build.zig: introduce `-Dflat` option which makes the installation
match what we want to ship for our download tarballs. This allows
deleting a bunch of shell script logic from the CI.
- for example it puts the executable directly in prefix/zig rather
than prefix/bin/zig and it additionally includes prefix/LICENSE.
* build.zig: by default also install std lib documentation to doc/std/
- this can be disabled by `-Dno-autodocs` similar to how there is
already `-Dno-langref`.
* build.zig: add `std-docs` and `langref` steps which build and install
the std lib autodocs and langref to prefix/doc/std and
prefix/doc/langref.html, respectively.
* std.Build: implement proper handling of `-femit-docs` using the
LazyPath system. This is a breaking change.
- this is a partial implementation of #16351
* frontend: fixed the handling of Autodocs with regards to caching and
putting the artifacts in the proper location to integrate with the
build system.
- closes#15864
* CI: delete the logic for autodocs since it is now handled by build.zig
and is enabled by default.
- in the future we should strive to have nearly all the CI shell
script logic deleted in favor of `zig build` commands.
* CI: pass `-DZIG_NO_LIB=ON`/`-Dno-lib` except for the one command where
we want to actually generate the langref and autodocs. Generating the
langref takes 14 minutes right now (why?!) so we don't want to do that
more times than necessary.
* Autodoc: fixed use of a global variable. It works fine as a local
variable instead.
- note that in the future we will want to make Autodoc run
simultaneously using the job system, but for now the principle of
YAGNI dictates that we don't have an init()/deinit() API and instead
simply call the function that does the things.
* Autodoc: only do it when there are no compile errors
Don't pass the object files from a static library to the linker invocation.
The lib.a file already contains them.
Avoids "duplicate symbol" errors (and useless work by the linker)