zig/lib/std/Build/Step/Compile.zig
2024-01-01 17:51:18 -07:00

1850 lines
68 KiB
Zig

const builtin = @import("builtin");
const std = @import("std");
const mem = std.mem;
const fs = std.fs;
const assert = std.debug.assert;
const panic = std.debug.panic;
const ArrayList = std.ArrayList;
const StringHashMap = std.StringHashMap;
const Sha256 = std.crypto.hash.sha2.Sha256;
const Allocator = mem.Allocator;
const Step = std.Build.Step;
const LazyPath = std.Build.LazyPath;
const PkgConfigPkg = std.Build.PkgConfigPkg;
const PkgConfigError = std.Build.PkgConfigError;
const RunError = std.Build.RunError;
const Module = std.Build.Module;
const InstallDir = std.Build.InstallDir;
const GeneratedFile = std.Build.GeneratedFile;
const Compile = @This();
pub const base_id: Step.Id = .compile;
step: Step,
root_module: Module,
name: []const u8,
linker_script: ?LazyPath = null,
version_script: ?[]const u8 = null,
out_filename: []const u8,
out_lib_filename: []const u8,
linkage: ?Linkage = null,
version: ?std.SemanticVersion,
kind: Kind,
major_only_filename: ?[]const u8,
name_only_filename: ?[]const u8,
// keep in sync with src/link.zig:CompressDebugSections
compress_debug_sections: enum { none, zlib, zstd } = .none,
verbose_link: bool,
verbose_cc: bool,
bundle_compiler_rt: ?bool = null,
rdynamic: bool,
import_memory: bool = false,
export_memory: bool = false,
/// For WebAssembly targets, this will allow for undefined symbols to
/// be imported from the host environment.
import_symbols: bool = false,
import_table: bool = false,
export_table: bool = false,
initial_memory: ?u64 = null,
max_memory: ?u64 = null,
shared_memory: bool = false,
global_base: ?u64 = null,
/// Set via options; intended to be read-only after that.
zig_lib_dir: ?LazyPath,
exec_cmd_args: ?[]const ?[]const u8,
filter: ?[]const u8,
test_evented_io: bool = false,
test_runner: ?[]const u8,
test_server_mode: bool,
wasi_exec_model: ?std.builtin.WasiExecModel = null,
installed_headers: ArrayList(*Step),
// keep in sync with src/Compilation.zig:RcIncludes
/// Behavior of automatic detection of include directories when compiling .rc files.
/// any: Use MSVC if available, fall back to MinGW.
/// msvc: Use MSVC include paths (must be present on the system).
/// gnu: Use MinGW include paths (distributed with Zig).
/// none: Do not use any autodetected include paths.
rc_includes: enum { any, msvc, gnu, none } = .any,
/// (Windows) .manifest file to embed in the compilation
/// Set via options; intended to be read-only after that.
win32_manifest: ?LazyPath = null,
installed_path: ?[]const u8,
/// Base address for an executable image.
image_base: ?u64 = null,
libc_file: ?LazyPath = null,
each_lib_rpath: ?bool = null,
/// On ELF targets, this will emit a link section called ".note.gnu.build-id"
/// which can be used to coordinate a stripped binary with its debug symbols.
/// As an example, the bloaty project refuses to work unless its inputs have
/// build ids, in order to prevent accidental mismatches.
/// The default is to not include this section because it slows down linking.
build_id: ?std.zig.BuildId = null,
/// Create a .eh_frame_hdr section and a PT_GNU_EH_FRAME segment in the ELF
/// file.
link_eh_frame_hdr: bool = false,
link_emit_relocs: bool = false,
/// Place every function in its own section so that unused ones may be
/// safely garbage-collected during the linking phase.
link_function_sections: bool = false,
/// Place every data in its own section so that unused ones may be
/// safely garbage-collected during the linking phase.
link_data_sections: bool = false,
/// Remove functions and data that are unreachable by the entry point or
/// exported symbols.
link_gc_sections: ?bool = null,
/// (Windows) Whether or not to enable ASLR. Maps to the /DYNAMICBASE[:NO] linker argument.
linker_dynamicbase: bool = true,
linker_allow_shlib_undefined: ?bool = null,
/// Permit read-only relocations in read-only segments. Disallowed by default.
link_z_notext: bool = false,
/// Force all relocations to be read-only after processing.
link_z_relro: bool = true,
/// Allow relocations to be lazily processed after load.
link_z_lazy: bool = false,
/// Common page size
link_z_common_page_size: ?u64 = null,
/// Maximum page size
link_z_max_page_size: ?u64 = null,
/// (Darwin) Install name for the dylib
install_name: ?[]const u8 = null,
/// (Darwin) Path to entitlements file
entitlements: ?[]const u8 = null,
/// (Darwin) Size of the pagezero segment.
pagezero_size: ?u64 = null,
/// (Darwin) Set size of the padding between the end of load commands
/// and start of `__TEXT,__text` section.
headerpad_size: ?u32 = null,
/// (Darwin) Automatically Set size of the padding between the end of load commands
/// and start of `__TEXT,__text` section to a value fitting all paths expanded to MAXPATHLEN.
headerpad_max_install_names: bool = false,
/// (Darwin) Remove dylibs that are unreachable by the entry point or exported symbols.
dead_strip_dylibs: bool = false,
/// Position Independent Executable
pie: ?bool = null,
dll_export_fns: ?bool = null,
subsystem: ?std.Target.SubSystem = null,
/// How the linker must handle the entry point of the executable.
entry: Entry = .default,
/// List of symbols forced as undefined in the symbol table
/// thus forcing their resolution by the linker.
/// Corresponds to `-u <symbol>` for ELF/MachO and `/include:<symbol>` for COFF/PE.
force_undefined_symbols: std.StringHashMap(void),
/// Overrides the default stack size
stack_size: ?u64 = null,
want_lto: ?bool = null,
use_llvm: ?bool,
use_lld: ?bool,
/// This is an advanced setting that can change the intent of this Compile step.
/// If this value is non-null, it means that this Compile step exists to
/// check for compile errors and return *success* if they match, and failure
/// otherwise.
expect_errors: ?ExpectedCompileErrors = null,
emit_directory: ?*GeneratedFile,
generated_docs: ?*GeneratedFile,
generated_asm: ?*GeneratedFile,
generated_bin: ?*GeneratedFile,
generated_pdb: ?*GeneratedFile,
generated_implib: ?*GeneratedFile,
generated_llvm_bc: ?*GeneratedFile,
generated_llvm_ir: ?*GeneratedFile,
generated_h: ?*GeneratedFile,
/// The maximum number of distinct errors within a compilation step
/// Defaults to `std.math.maxInt(u16)`
error_limit: ?u32 = null,
/// Computed during make().
is_linking_libc: bool = false,
/// Computed during make().
is_linking_libcpp: bool = false,
pub const ExpectedCompileErrors = union(enum) {
contains: []const u8,
exact: []const []const u8,
};
pub const Entry = union(enum) {
/// Let the compiler decide whether to make an entry point and what to name
/// it.
default,
/// The executable will have no entry point.
disabled,
/// The executable will have an entry point with the default symbol name.
enabled,
/// The executable will have an entry point with the specified symbol name.
symbol_name: []const u8,
};
pub const Options = struct {
name: []const u8,
root_module: Module.CreateOptions,
kind: Kind,
linkage: ?Linkage = null,
version: ?std.SemanticVersion = null,
max_rss: usize = 0,
filter: ?[]const u8 = null,
test_runner: ?[]const u8 = null,
use_llvm: ?bool = null,
use_lld: ?bool = null,
zig_lib_dir: ?LazyPath = null,
/// Embed a `.manifest` file in the compilation if the object format supports it.
/// https://learn.microsoft.com/en-us/windows/win32/sbscs/manifest-files-reference
/// Manifest files must have the extension `.manifest`.
/// Can be set regardless of target. The `.manifest` file will be ignored
/// if the target object format does not support embedded manifests.
win32_manifest: ?LazyPath = null,
};
pub const Kind = enum {
exe,
lib,
obj,
@"test",
};
pub const Linkage = enum { dynamic, static };
pub fn create(owner: *std.Build, options: Options) *Compile {
const name = owner.dupe(options.name);
if (mem.indexOf(u8, name, "/") != null or mem.indexOf(u8, name, "\\") != null) {
panic("invalid name: '{s}'. It looks like a file path, but it is supposed to be the library or application name.", .{name});
}
// Avoid the common case of the step name looking like "zig test test".
const name_adjusted = if (options.kind == .@"test" and mem.eql(u8, name, "test"))
""
else
owner.fmt("{s} ", .{name});
const target = options.root_module.target.?.target;
const step_name = owner.fmt("{s} {s}{s} {s}", .{
switch (options.kind) {
.exe => "zig build-exe",
.lib => "zig build-lib",
.obj => "zig build-obj",
.@"test" => "zig test",
},
name_adjusted,
@tagName(options.root_module.optimize orelse .Debug),
target.zigTriple(owner.allocator) catch @panic("OOM"),
});
const out_filename = std.zig.binNameAlloc(owner.allocator, .{
.root_name = name,
.target = target,
.output_mode = switch (options.kind) {
.lib => .Lib,
.obj => .Obj,
.exe, .@"test" => .Exe,
},
.link_mode = if (options.linkage) |some| @as(std.builtin.LinkMode, switch (some) {
.dynamic => .Dynamic,
.static => .Static,
}) else null,
.version = options.version,
}) catch @panic("OOM");
const self = owner.allocator.create(Compile) catch @panic("OOM");
self.* = .{
.root_module = undefined,
.verbose_link = false,
.verbose_cc = false,
.linkage = options.linkage,
.kind = options.kind,
.name = name,
.step = Step.init(.{
.id = base_id,
.name = step_name,
.owner = owner,
.makeFn = make,
.max_rss = options.max_rss,
}),
.version = options.version,
.out_filename = out_filename,
.out_lib_filename = undefined,
.major_only_filename = null,
.name_only_filename = null,
.installed_headers = ArrayList(*Step).init(owner.allocator),
.zig_lib_dir = null,
.exec_cmd_args = null,
.filter = options.filter,
.test_runner = options.test_runner,
.test_server_mode = options.test_runner == null,
.rdynamic = false,
.installed_path = null,
.force_undefined_symbols = StringHashMap(void).init(owner.allocator),
.emit_directory = null,
.generated_docs = null,
.generated_asm = null,
.generated_bin = null,
.generated_pdb = null,
.generated_implib = null,
.generated_llvm_bc = null,
.generated_llvm_ir = null,
.generated_h = null,
.use_llvm = options.use_llvm,
.use_lld = options.use_lld,
};
self.root_module.init(owner, options.root_module, self);
if (options.zig_lib_dir) |lp| {
self.zig_lib_dir = lp.dupe(self.step.owner);
lp.addStepDependencies(&self.step);
}
// Only the PE/COFF format has a Resource Table which is where the manifest
// gets embedded, so for any other target the manifest file is just ignored.
if (target.ofmt == .coff) {
if (options.win32_manifest) |lp| {
self.win32_manifest = lp.dupe(self.step.owner);
lp.addStepDependencies(&self.step);
}
}
if (self.kind == .lib) {
if (self.linkage != null and self.linkage.? == .static) {
self.out_lib_filename = self.out_filename;
} else if (self.version) |version| {
if (target.isDarwin()) {
self.major_only_filename = owner.fmt("lib{s}.{d}.dylib", .{
self.name,
version.major,
});
self.name_only_filename = owner.fmt("lib{s}.dylib", .{self.name});
self.out_lib_filename = self.out_filename;
} else if (target.os.tag == .windows) {
self.out_lib_filename = owner.fmt("{s}.lib", .{self.name});
} else {
self.major_only_filename = owner.fmt("lib{s}.so.{d}", .{ self.name, version.major });
self.name_only_filename = owner.fmt("lib{s}.so", .{self.name});
self.out_lib_filename = self.out_filename;
}
} else {
if (target.isDarwin()) {
self.out_lib_filename = self.out_filename;
} else if (target.os.tag == .windows) {
self.out_lib_filename = owner.fmt("{s}.lib", .{self.name});
} else {
self.out_lib_filename = self.out_filename;
}
}
}
return self;
}
pub fn installHeader(cs: *Compile, src_path: []const u8, dest_rel_path: []const u8) void {
const b = cs.step.owner;
const install_file = b.addInstallHeaderFile(src_path, dest_rel_path);
b.getInstallStep().dependOn(&install_file.step);
cs.installed_headers.append(&install_file.step) catch @panic("OOM");
}
pub const InstallConfigHeaderOptions = struct {
install_dir: InstallDir = .header,
dest_rel_path: ?[]const u8 = null,
};
pub fn installConfigHeader(
cs: *Compile,
config_header: *Step.ConfigHeader,
options: InstallConfigHeaderOptions,
) void {
const dest_rel_path = options.dest_rel_path orelse config_header.include_path;
const b = cs.step.owner;
const install_file = b.addInstallFileWithDir(
.{ .generated = &config_header.output_file },
options.install_dir,
dest_rel_path,
);
install_file.step.dependOn(&config_header.step);
b.getInstallStep().dependOn(&install_file.step);
cs.installed_headers.append(&install_file.step) catch @panic("OOM");
}
pub fn installHeadersDirectory(
a: *Compile,
src_dir_path: []const u8,
dest_rel_path: []const u8,
) void {
return installHeadersDirectoryOptions(a, .{
.source_dir = .{ .path = src_dir_path },
.install_dir = .header,
.install_subdir = dest_rel_path,
});
}
pub fn installHeadersDirectoryOptions(
cs: *Compile,
options: std.Build.Step.InstallDir.Options,
) void {
const b = cs.step.owner;
const install_dir = b.addInstallDirectory(options);
b.getInstallStep().dependOn(&install_dir.step);
cs.installed_headers.append(&install_dir.step) catch @panic("OOM");
}
pub fn installLibraryHeaders(cs: *Compile, l: *Compile) void {
assert(l.kind == .lib);
const b = cs.step.owner;
const install_step = b.getInstallStep();
// Copy each element from installed_headers, modifying the builder
// to be the new parent's builder.
for (l.installed_headers.items) |step| {
const step_copy = switch (step.id) {
inline .install_file, .install_dir => |id| blk: {
const T = id.Type();
const ptr = b.allocator.create(T) catch @panic("OOM");
ptr.* = step.cast(T).?.*;
ptr.dest_builder = b;
break :blk &ptr.step;
},
else => unreachable,
};
cs.installed_headers.append(step_copy) catch @panic("OOM");
install_step.dependOn(step_copy);
}
cs.installed_headers.appendSlice(l.installed_headers.items) catch @panic("OOM");
}
pub fn addObjCopy(cs: *Compile, options: Step.ObjCopy.Options) *Step.ObjCopy {
const b = cs.step.owner;
var copy = options;
if (copy.basename == null) {
if (options.format) |f| {
copy.basename = b.fmt("{s}.{s}", .{ cs.name, @tagName(f) });
} else {
copy.basename = cs.name;
}
}
return b.addObjCopy(cs.getEmittedBin(), copy);
}
/// This function would run in the context of the package that created the executable,
/// which is undesirable when running an executable provided by a dependency package.
pub const run = @compileError("deprecated; use std.Build.addRunArtifact");
/// This function would install in the context of the package that created the artifact,
/// which is undesirable when installing an artifact provided by a dependency package.
pub const install = @compileError("deprecated; use std.Build.installArtifact");
pub fn checkObject(self: *Compile) *Step.CheckObject {
return Step.CheckObject.create(self.step.owner, self.getEmittedBin(), self.rootModuleTarget().ofmt);
}
/// deprecated: use `setLinkerScript`
pub const setLinkerScriptPath = setLinkerScript;
pub fn setLinkerScript(self: *Compile, source: LazyPath) void {
const b = self.step.owner;
self.linker_script = source.dupe(b);
source.addStepDependencies(&self.step);
}
pub fn forceUndefinedSymbol(self: *Compile, symbol_name: []const u8) void {
const b = self.step.owner;
self.force_undefined_symbols.put(b.dupe(symbol_name), {}) catch @panic("OOM");
}
/// Returns whether the library, executable, or object depends on a particular system library.
/// Includes transitive dependencies.
pub fn dependsOnSystemLibrary(self: *const Compile, name: []const u8) bool {
var is_linking_libc = false;
var is_linking_libcpp = false;
var it = self.root_module.iterateDependencies(self, true);
while (it.next()) |module| {
for (module.link_objects.items) |link_object| {
switch (link_object) {
.system_lib => |lib| if (mem.eql(u8, lib.name, name)) return true,
else => continue,
}
}
is_linking_libc = is_linking_libc or module.link_libcpp == true;
is_linking_libcpp = is_linking_libcpp or module.link_libcpp == true;
}
if (self.rootModuleTarget().is_libc_lib_name(name)) {
return is_linking_libc;
}
if (self.rootModuleTarget().is_libcpp_lib_name(name)) {
return is_linking_libcpp;
}
return false;
}
pub fn isDynamicLibrary(self: *const Compile) bool {
return self.kind == .lib and self.linkage == Linkage.dynamic;
}
pub fn isStaticLibrary(self: *const Compile) bool {
return self.kind == .lib and self.linkage != Linkage.dynamic;
}
pub fn producesPdbFile(self: *Compile) bool {
const target = self.rootModuleTarget();
// TODO: Is this right? Isn't PDB for *any* PE/COFF file?
// TODO: just share this logic with the compiler, silly!
switch (target.os.tag) {
.windows, .uefi => {},
else => return false,
}
if (target.ofmt == .c) return false;
if (self.root_module.strip == true or
(self.root_module.strip == null and self.root_module.optimize == .ReleaseSmall))
{
return false;
}
return self.isDynamicLibrary() or self.kind == .exe or self.kind == .@"test";
}
pub fn producesImplib(self: *Compile) bool {
return self.isDynamicLibrary() and self.rootModuleTarget().os.tag == .windows;
}
pub fn linkLibC(self: *Compile) void {
self.root_module.link_libc = true;
}
pub fn linkLibCpp(self: *Compile) void {
self.root_module.link_libcpp = true;
}
/// Deprecated. Use `c.root_module.addCMacro`.
pub fn defineCMacro(c: *Compile, name: []const u8, value: ?[]const u8) void {
c.root_module.addCMacro(name, value orelse "1");
}
/// Run pkg-config for the given library name and parse the output, returning the arguments
/// that should be passed to zig to link the given library.
fn runPkgConfig(self: *Compile, lib_name: []const u8) ![]const []const u8 {
const b = self.step.owner;
const pkg_name = match: {
// First we have to map the library name to pkg config name. Unfortunately,
// there are several examples where this is not straightforward:
// -lSDL2 -> pkg-config sdl2
// -lgdk-3 -> pkg-config gdk-3.0
// -latk-1.0 -> pkg-config atk
const pkgs = try getPkgConfigList(b);
// Exact match means instant winner.
for (pkgs) |pkg| {
if (mem.eql(u8, pkg.name, lib_name)) {
break :match pkg.name;
}
}
// Next we'll try ignoring case.
for (pkgs) |pkg| {
if (std.ascii.eqlIgnoreCase(pkg.name, lib_name)) {
break :match pkg.name;
}
}
// Now try appending ".0".
for (pkgs) |pkg| {
if (std.ascii.indexOfIgnoreCase(pkg.name, lib_name)) |pos| {
if (pos != 0) continue;
if (mem.eql(u8, pkg.name[lib_name.len..], ".0")) {
break :match pkg.name;
}
}
}
// Trimming "-1.0".
if (mem.endsWith(u8, lib_name, "-1.0")) {
const trimmed_lib_name = lib_name[0 .. lib_name.len - "-1.0".len];
for (pkgs) |pkg| {
if (std.ascii.eqlIgnoreCase(pkg.name, trimmed_lib_name)) {
break :match pkg.name;
}
}
}
return error.PackageNotFound;
};
var code: u8 = undefined;
const stdout = if (b.runAllowFail(&[_][]const u8{
"pkg-config",
pkg_name,
"--cflags",
"--libs",
}, &code, .Ignore)) |stdout| stdout else |err| switch (err) {
error.ProcessTerminated => return error.PkgConfigCrashed,
error.ExecNotSupported => return error.PkgConfigFailed,
error.ExitCodeFailure => return error.PkgConfigFailed,
error.FileNotFound => return error.PkgConfigNotInstalled,
else => return err,
};
var zig_args = ArrayList([]const u8).init(b.allocator);
defer zig_args.deinit();
var it = mem.tokenizeAny(u8, stdout, " \r\n\t");
while (it.next()) |tok| {
if (mem.eql(u8, tok, "-I")) {
const dir = it.next() orelse return error.PkgConfigInvalidOutput;
try zig_args.appendSlice(&[_][]const u8{ "-I", dir });
} else if (mem.startsWith(u8, tok, "-I")) {
try zig_args.append(tok);
} else if (mem.eql(u8, tok, "-L")) {
const dir = it.next() orelse return error.PkgConfigInvalidOutput;
try zig_args.appendSlice(&[_][]const u8{ "-L", dir });
} else if (mem.startsWith(u8, tok, "-L")) {
try zig_args.append(tok);
} else if (mem.eql(u8, tok, "-l")) {
const lib = it.next() orelse return error.PkgConfigInvalidOutput;
try zig_args.appendSlice(&[_][]const u8{ "-l", lib });
} else if (mem.startsWith(u8, tok, "-l")) {
try zig_args.append(tok);
} else if (mem.eql(u8, tok, "-D")) {
const macro = it.next() orelse return error.PkgConfigInvalidOutput;
try zig_args.appendSlice(&[_][]const u8{ "-D", macro });
} else if (mem.startsWith(u8, tok, "-D")) {
try zig_args.append(tok);
} else if (b.debug_pkg_config) {
return self.step.fail("unknown pkg-config flag '{s}'", .{tok});
}
}
return zig_args.toOwnedSlice();
}
pub fn linkSystemLibrary(self: *Compile, name: []const u8) void {
return self.root_module.linkSystemLibrary(name, .{});
}
pub fn linkSystemLibrary2(
self: *Compile,
name: []const u8,
options: Module.LinkSystemLibraryOptions,
) void {
return self.root_module.linkSystemLibrary(name, options);
}
pub fn linkFramework(c: *Compile, name: []const u8) void {
c.root_module.linkFramework(name, .{});
}
/// Deprecated. Use `c.root_module.linkFramework`.
pub fn linkFrameworkNeeded(c: *Compile, name: []const u8) void {
c.root_module.linkFramework(name, .{ .needed = true });
}
/// Deprecated. Use `c.root_module.linkFramework`.
pub fn linkFrameworkWeak(c: *Compile, name: []const u8) void {
c.root_module.linkFramework(name, .{ .weak = true });
}
/// Handy when you have many C/C++ source files and want them all to have the same flags.
pub fn addCSourceFiles(self: *Compile, options: Module.AddCSourceFilesOptions) void {
self.root_module.addCSourceFiles(options);
}
pub fn addCSourceFile(self: *Compile, source: Module.CSourceFile) void {
self.root_module.addCSourceFile(source);
}
/// Resource files must have the extension `.rc`.
/// Can be called regardless of target. The .rc file will be ignored
/// if the target object format does not support embedded resources.
pub fn addWin32ResourceFile(self: *Compile, source: Module.RcSourceFile) void {
self.root_module.addWin32ResourceFile(source);
}
pub fn setVerboseLink(self: *Compile, value: bool) void {
self.verbose_link = value;
}
pub fn setVerboseCC(self: *Compile, value: bool) void {
self.verbose_cc = value;
}
pub fn setLibCFile(self: *Compile, libc_file: ?LazyPath) void {
const b = self.step.owner;
self.libc_file = if (libc_file) |f| f.dupe(b) else null;
}
fn getEmittedFileGeneric(self: *Compile, output_file: *?*GeneratedFile) LazyPath {
if (output_file.*) |g| {
return .{ .generated = g };
}
const arena = self.step.owner.allocator;
const generated_file = arena.create(GeneratedFile) catch @panic("OOM");
generated_file.* = .{ .step = &self.step };
output_file.* = generated_file;
return .{ .generated = generated_file };
}
/// Returns the path to the directory that contains the emitted binary file.
pub fn getEmittedBinDirectory(self: *Compile) LazyPath {
_ = self.getEmittedBin();
return self.getEmittedFileGeneric(&self.emit_directory);
}
/// Returns the path to the generated executable, library or object file.
/// To run an executable built with zig build, use `run`, or create an install step and invoke it.
pub fn getEmittedBin(self: *Compile) LazyPath {
return self.getEmittedFileGeneric(&self.generated_bin);
}
/// Returns the path to the generated import library.
/// This function can only be called for libraries.
pub fn getEmittedImplib(self: *Compile) LazyPath {
assert(self.kind == .lib);
return self.getEmittedFileGeneric(&self.generated_implib);
}
/// Returns the path to the generated header file.
/// This function can only be called for libraries or objects.
pub fn getEmittedH(self: *Compile) LazyPath {
assert(self.kind != .exe and self.kind != .@"test");
return self.getEmittedFileGeneric(&self.generated_h);
}
/// Returns the generated PDB file.
/// If the compilation does not produce a PDB file, this causes a FileNotFound error
/// at build time.
pub fn getEmittedPdb(self: *Compile) LazyPath {
_ = self.getEmittedBin();
return self.getEmittedFileGeneric(&self.generated_pdb);
}
/// Returns the path to the generated documentation directory.
pub fn getEmittedDocs(self: *Compile) LazyPath {
return self.getEmittedFileGeneric(&self.generated_docs);
}
/// Returns the path to the generated assembly code.
pub fn getEmittedAsm(self: *Compile) LazyPath {
return self.getEmittedFileGeneric(&self.generated_asm);
}
/// Returns the path to the generated LLVM IR.
pub fn getEmittedLlvmIr(self: *Compile) LazyPath {
return self.getEmittedFileGeneric(&self.generated_llvm_ir);
}
/// Returns the path to the generated LLVM BC.
pub fn getEmittedLlvmBc(self: *Compile) LazyPath {
return self.getEmittedFileGeneric(&self.generated_llvm_bc);
}
pub fn addAssemblyFile(self: *Compile, source: LazyPath) void {
self.root_module.addAssemblyFile(source);
}
pub fn addObjectFile(self: *Compile, source: LazyPath) void {
self.root_module.addObjectFile(source);
}
pub fn addObject(self: *Compile, object: *Compile) void {
self.root_module.addObject(object);
}
pub fn linkLibrary(self: *Compile, library: *Compile) void {
self.root_module.linkLibrary(library);
}
pub fn addAfterIncludePath(self: *Compile, lazy_path: LazyPath) void {
self.root_module.addAfterIncludePath(lazy_path);
}
pub fn addSystemIncludePath(self: *Compile, lazy_path: LazyPath) void {
self.root_module.addSystemIncludePath(lazy_path);
}
pub fn addIncludePath(self: *Compile, lazy_path: LazyPath) void {
self.root_module.addIncludePath(lazy_path);
}
pub fn addConfigHeader(self: *Compile, config_header: *Step.ConfigHeader) void {
self.root_module.addConfigHeader(config_header);
}
pub fn addLibraryPath(self: *Compile, directory_path: LazyPath) void {
self.root_module.addLibraryPath(directory_path);
}
pub fn addRPath(self: *Compile, directory_path: LazyPath) void {
self.root_module.addRPath(directory_path);
}
pub fn addSystemFrameworkPath(self: *Compile, directory_path: LazyPath) void {
self.root_module.addSystemFrameworkPath(directory_path);
}
pub fn addFrameworkPath(self: *Compile, directory_path: LazyPath) void {
self.root_module.addFrameworkPath(directory_path);
}
pub fn setExecCmd(self: *Compile, args: []const ?[]const u8) void {
const b = self.step.owner;
assert(self.kind == .@"test");
const duped_args = b.allocator.alloc(?[]u8, args.len) catch @panic("OOM");
for (args, 0..) |arg, i| {
duped_args[i] = if (arg) |a| b.dupe(a) else null;
}
self.exec_cmd_args = duped_args;
}
fn appendModuleArgs(cs: *Compile, zig_args: *ArrayList([]const u8)) !void {
const b = cs.step.owner;
// First, traverse the whole dependency graph and give every module a
// unique name, ideally one named after what it's called somewhere in the
// graph. It will help here to have both a mapping from module to name and
// a set of all the currently-used names.
var mod_names: std.AutoArrayHashMapUnmanaged(*Module, []const u8) = .{};
var names = std.StringHashMap(void).init(b.allocator);
{
var it = cs.root_module.iterateDependencies(null, false);
_ = it.next(); // Skip over the root module.
while (it.next()) |item| {
// While we're traversing the root dependencies, let's make sure that no module names
// have colons in them, since the CLI forbids it. We handle this for transitive
// dependencies further down.
if (std.mem.indexOfScalar(u8, item.name, ':') != null) {
return cs.step.fail("module '{s}' contains a colon", .{item.name});
}
var name = item.name;
var n: usize = 0;
while (names.contains(name)) {
name = b.fmt("{s}{d}", .{ item.name, n });
n += 1;
}
try mod_names.put(b.allocator, item.module, name);
try names.put(name, {});
}
}
// Since the module names given to the CLI are based off of the exposed
// names, we already know that none of the CLI names have colons in them,
// so there's no need to check that explicitly.
// Every module in the graph is now named; output their definitions
for (mod_names.keys(), mod_names.values()) |mod, name| {
const root_src = mod.root_source_file orelse continue;
const deps_str = try constructDepString(b.allocator, mod_names, mod.import_table);
const src = root_src.getPath2(mod.owner, &cs.step);
try zig_args.append("--mod");
try zig_args.append(b.fmt("{s}:{s}:{s}", .{ name, deps_str, src }));
}
// Lastly, output the root dependencies
const deps_str = try constructDepString(b.allocator, mod_names, cs.root_module.import_table);
if (deps_str.len > 0) {
try zig_args.append("--deps");
try zig_args.append(deps_str);
}
}
fn constructDepString(
allocator: std.mem.Allocator,
mod_names: std.AutoArrayHashMapUnmanaged(*Module, []const u8),
deps: std.StringArrayHashMapUnmanaged(*Module),
) ![]const u8 {
var deps_str = std.ArrayList(u8).init(allocator);
var it = deps.iterator();
while (it.next()) |kv| {
const expose = kv.key_ptr.*;
const name = mod_names.get(kv.value_ptr.*).?;
if (std.mem.eql(u8, expose, name)) {
try deps_str.writer().print("{s},", .{name});
} else {
try deps_str.writer().print("{s}={s},", .{ expose, name });
}
}
if (deps_str.items.len > 0) {
return deps_str.items[0 .. deps_str.items.len - 1]; // omit trailing comma
} else {
return "";
}
}
fn getGeneratedFilePath(self: *Compile, comptime tag_name: []const u8, asking_step: ?*Step) []const u8 {
const maybe_path: ?*GeneratedFile = @field(self, tag_name);
const generated_file = maybe_path orelse {
std.debug.getStderrMutex().lock();
const stderr = std.io.getStdErr();
std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {};
@panic("missing emit option for " ++ tag_name);
};
const path = generated_file.path orelse {
std.debug.getStderrMutex().lock();
const stderr = std.io.getStdErr();
std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {};
@panic(tag_name ++ " is null. Is there a missing step dependency?");
};
return path;
}
fn make(step: *Step, prog_node: *std.Progress.Node) !void {
const b = step.owner;
const self = @fieldParentPtr(Compile, "step", step);
var zig_args = ArrayList([]const u8).init(b.allocator);
defer zig_args.deinit();
try zig_args.append(b.zig_exe);
const cmd = switch (self.kind) {
.lib => "build-lib",
.exe => "build-exe",
.obj => "build-obj",
.@"test" => "test",
};
try zig_args.append(cmd);
if (b.reference_trace) |some| {
try zig_args.append(try std.fmt.allocPrint(b.allocator, "-freference-trace={d}", .{some}));
}
try addFlag(&zig_args, "llvm", self.use_llvm);
try addFlag(&zig_args, "lld", self.use_lld);
if (self.root_module.target.?.query.ofmt) |ofmt| {
try zig_args.append(try std.fmt.allocPrint(b.allocator, "-ofmt={s}", .{@tagName(ofmt)}));
}
switch (self.entry) {
.default => {},
.disabled => try zig_args.append("-fno-entry"),
.enabled => try zig_args.append("-fentry"),
.symbol_name => |entry_name| {
try zig_args.append(try std.fmt.allocPrint(b.allocator, "-fentry={s}", .{entry_name}));
},
}
{
var it = self.force_undefined_symbols.keyIterator();
while (it.next()) |symbol_name| {
try zig_args.append("--force_undefined");
try zig_args.append(symbol_name.*);
}
}
if (self.stack_size) |stack_size| {
try zig_args.append("--stack");
try zig_args.append(try std.fmt.allocPrint(b.allocator, "{}", .{stack_size}));
}
{
var seen_system_libs: std.StringHashMapUnmanaged(void) = .{};
var frameworks: std.StringArrayHashMapUnmanaged(Module.LinkFrameworkOptions) = .{};
var prev_has_cflags = false;
var prev_has_rcflags = false;
var prev_search_strategy: Module.SystemLib.SearchStrategy = .paths_first;
var prev_preferred_link_mode: std.builtin.LinkMode = .Dynamic;
// Track the number of positional arguments so that a nice error can be
// emitted if there is nothing to link.
var total_linker_objects: usize = 0;
if (self.root_module.root_source_file) |lp| {
try zig_args.append(lp.getPath(b));
total_linker_objects += 1;
}
try self.root_module.appendZigProcessFlags(&zig_args, step);
{
// Fully recursive iteration including dynamic libraries to detect
// libc and libc++ linkage.
var it = self.root_module.iterateDependencies(self, true);
while (it.next()) |key| {
if (key.module.link_libc == true) self.is_linking_libc = true;
if (key.module.link_libcpp == true) self.is_linking_libcpp = true;
}
}
// For this loop, don't chase dynamic libraries because their link
// objects are already linked.
var it = self.root_module.iterateDependencies(self, false);
while (it.next()) |key| {
const module = key.module;
const compile = key.compile.?;
// While walking transitive dependencies, if a given link object is
// already included in a library, it should not redundantly be
// placed on the linker line of the dependee.
const my_responsibility = compile == self;
const already_linked = !my_responsibility and compile.isDynamicLibrary();
// Inherit dependencies on darwin frameworks.
if (!already_linked) {
for (module.frameworks.keys(), module.frameworks.values()) |name, info| {
try frameworks.put(b.allocator, name, info);
}
}
// Inherit dependencies on system libraries and static libraries.
for (module.link_objects.items) |link_object| {
switch (link_object) {
.static_path => |static_path| {
if (my_responsibility) {
try zig_args.append(static_path.getPath(b));
total_linker_objects += 1;
}
},
.system_lib => |system_lib| {
if ((try seen_system_libs.fetchPut(b.allocator, system_lib.name, {})) != null)
continue;
if (already_linked)
continue;
if ((system_lib.search_strategy != prev_search_strategy or
system_lib.preferred_link_mode != prev_preferred_link_mode) and
self.linkage != .static)
{
switch (system_lib.search_strategy) {
.no_fallback => switch (system_lib.preferred_link_mode) {
.Dynamic => try zig_args.append("-search_dylibs_only"),
.Static => try zig_args.append("-search_static_only"),
},
.paths_first => switch (system_lib.preferred_link_mode) {
.Dynamic => try zig_args.append("-search_paths_first"),
.Static => try zig_args.append("-search_paths_first_static"),
},
.mode_first => switch (system_lib.preferred_link_mode) {
.Dynamic => try zig_args.append("-search_dylibs_first"),
.Static => try zig_args.append("-search_static_first"),
},
}
prev_search_strategy = system_lib.search_strategy;
prev_preferred_link_mode = system_lib.preferred_link_mode;
}
const prefix: []const u8 = prefix: {
if (system_lib.needed) break :prefix "-needed-l";
if (system_lib.weak) break :prefix "-weak-l";
break :prefix "-l";
};
switch (system_lib.use_pkg_config) {
.no => try zig_args.append(b.fmt("{s}{s}", .{ prefix, system_lib.name })),
.yes, .force => {
if (self.runPkgConfig(system_lib.name)) |args| {
try zig_args.appendSlice(args);
} else |err| switch (err) {
error.PkgConfigInvalidOutput,
error.PkgConfigCrashed,
error.PkgConfigFailed,
error.PkgConfigNotInstalled,
error.PackageNotFound,
=> switch (system_lib.use_pkg_config) {
.yes => {
// pkg-config failed, so fall back to linking the library
// by name directly.
try zig_args.append(b.fmt("{s}{s}", .{
prefix,
system_lib.name,
}));
},
.force => {
panic("pkg-config failed for library {s}", .{system_lib.name});
},
.no => unreachable,
},
else => |e| return e,
}
},
}
},
.other_step => |other| {
switch (other.kind) {
.exe => return step.fail("cannot link with an executable build artifact", .{}),
.@"test" => return step.fail("cannot link with a test", .{}),
.obj => {
const included_in_lib = !my_responsibility and
compile.kind == .lib and other.kind == .obj;
if (!already_linked and !included_in_lib) {
try zig_args.append(other.getEmittedBin().getPath(b));
total_linker_objects += 1;
}
},
.lib => l: {
const other_produces_implib = other.producesImplib();
const other_is_static = other_produces_implib or other.isStaticLibrary();
if (self.isStaticLibrary() and other_is_static) {
// Avoid putting a static library inside a static library.
break :l;
}
// For DLLs, we must link against the implib.
// For everything else, we directly link
// against the library file.
const full_path_lib = if (other_produces_implib)
other.getGeneratedFilePath("generated_implib", &self.step)
else
other.getGeneratedFilePath("generated_bin", &self.step);
try zig_args.append(full_path_lib);
total_linker_objects += 1;
if (other.linkage == Linkage.dynamic and
self.rootModuleTarget().os.tag != .windows)
{
if (fs.path.dirname(full_path_lib)) |dirname| {
try zig_args.append("-rpath");
try zig_args.append(dirname);
}
}
},
}
},
.assembly_file => |asm_file| l: {
if (!my_responsibility) break :l;
if (prev_has_cflags) {
try zig_args.append("-cflags");
try zig_args.append("--");
prev_has_cflags = false;
}
try zig_args.append(asm_file.getPath(b));
total_linker_objects += 1;
},
.c_source_file => |c_source_file| l: {
if (!my_responsibility) break :l;
if (c_source_file.flags.len == 0) {
if (prev_has_cflags) {
try zig_args.append("-cflags");
try zig_args.append("--");
prev_has_cflags = false;
}
} else {
try zig_args.append("-cflags");
for (c_source_file.flags) |arg| {
try zig_args.append(arg);
}
try zig_args.append("--");
prev_has_cflags = true;
}
try zig_args.append(c_source_file.file.getPath(b));
total_linker_objects += 1;
},
.c_source_files => |c_source_files| l: {
if (!my_responsibility) break :l;
if (c_source_files.flags.len == 0) {
if (prev_has_cflags) {
try zig_args.append("-cflags");
try zig_args.append("--");
prev_has_cflags = false;
}
} else {
try zig_args.append("-cflags");
for (c_source_files.flags) |flag| {
try zig_args.append(flag);
}
try zig_args.append("--");
prev_has_cflags = true;
}
if (c_source_files.dependency) |dep| {
for (c_source_files.files) |file| {
try zig_args.append(dep.builder.pathFromRoot(file));
}
} else {
for (c_source_files.files) |file| {
try zig_args.append(b.pathFromRoot(file));
}
}
total_linker_objects += c_source_files.files.len;
},
.win32_resource_file => |rc_source_file| l: {
if (!my_responsibility) break :l;
if (rc_source_file.flags.len == 0) {
if (prev_has_rcflags) {
try zig_args.append("-rcflags");
try zig_args.append("--");
prev_has_rcflags = false;
}
} else {
try zig_args.append("-rcflags");
for (rc_source_file.flags) |arg| {
try zig_args.append(arg);
}
try zig_args.append("--");
prev_has_rcflags = true;
}
try zig_args.append(rc_source_file.file.getPath(b));
total_linker_objects += 1;
},
}
}
}
if (total_linker_objects == 0) {
return step.fail("the linker needs one or more objects to link", .{});
}
for (frameworks.keys(), frameworks.values()) |name, info| {
if (info.needed) {
try zig_args.append("-needed_framework");
} else if (info.weak) {
try zig_args.append("-weak_framework");
} else {
try zig_args.append("-framework");
}
try zig_args.append(name);
}
if (self.is_linking_libcpp) {
try zig_args.append("-lc++");
}
if (self.is_linking_libc) {
try zig_args.append("-lc");
}
}
if (self.win32_manifest) |manifest_file| {
try zig_args.append(manifest_file.getPath(b));
}
if (self.image_base) |image_base| {
try zig_args.append("--image-base");
try zig_args.append(b.fmt("0x{x}", .{image_base}));
}
if (self.filter) |filter| {
try zig_args.append("--test-filter");
try zig_args.append(filter);
}
if (self.test_evented_io) {
try zig_args.append("--test-evented-io");
}
if (self.test_runner) |test_runner| {
try zig_args.append("--test-runner");
try zig_args.append(b.pathFromRoot(test_runner));
}
for (b.debug_log_scopes) |log_scope| {
try zig_args.append("--debug-log");
try zig_args.append(log_scope);
}
if (b.debug_compile_errors) {
try zig_args.append("--debug-compile-errors");
}
if (b.verbose_cimport) try zig_args.append("--verbose-cimport");
if (b.verbose_air) try zig_args.append("--verbose-air");
if (b.verbose_llvm_ir) |path| try zig_args.append(b.fmt("--verbose-llvm-ir={s}", .{path}));
if (b.verbose_llvm_bc) |path| try zig_args.append(b.fmt("--verbose-llvm-bc={s}", .{path}));
if (b.verbose_link or self.verbose_link) try zig_args.append("--verbose-link");
if (b.verbose_cc or self.verbose_cc) try zig_args.append("--verbose-cc");
if (b.verbose_llvm_cpu_features) try zig_args.append("--verbose-llvm-cpu-features");
if (self.generated_asm != null) try zig_args.append("-femit-asm");
if (self.generated_bin == null) try zig_args.append("-fno-emit-bin");
if (self.generated_docs != null) try zig_args.append("-femit-docs");
if (self.generated_implib != null) try zig_args.append("-femit-implib");
if (self.generated_llvm_bc != null) try zig_args.append("-femit-llvm-bc");
if (self.generated_llvm_ir != null) try zig_args.append("-femit-llvm-ir");
if (self.generated_h != null) try zig_args.append("-femit-h");
switch (self.compress_debug_sections) {
.none => {},
.zlib => try zig_args.append("--compress-debug-sections=zlib"),
.zstd => try zig_args.append("--compress-debug-sections=zstd"),
}
if (self.link_eh_frame_hdr) {
try zig_args.append("--eh-frame-hdr");
}
if (self.link_emit_relocs) {
try zig_args.append("--emit-relocs");
}
if (self.link_function_sections) {
try zig_args.append("-ffunction-sections");
}
if (self.link_data_sections) {
try zig_args.append("-fdata-sections");
}
if (self.link_gc_sections) |x| {
try zig_args.append(if (x) "--gc-sections" else "--no-gc-sections");
}
if (!self.linker_dynamicbase) {
try zig_args.append("--no-dynamicbase");
}
if (self.linker_allow_shlib_undefined) |x| {
try zig_args.append(if (x) "-fallow-shlib-undefined" else "-fno-allow-shlib-undefined");
}
if (self.link_z_notext) {
try zig_args.append("-z");
try zig_args.append("notext");
}
if (!self.link_z_relro) {
try zig_args.append("-z");
try zig_args.append("norelro");
}
if (self.link_z_lazy) {
try zig_args.append("-z");
try zig_args.append("lazy");
}
if (self.link_z_common_page_size) |size| {
try zig_args.append("-z");
try zig_args.append(b.fmt("common-page-size={d}", .{size}));
}
if (self.link_z_max_page_size) |size| {
try zig_args.append("-z");
try zig_args.append(b.fmt("max-page-size={d}", .{size}));
}
if (self.libc_file) |libc_file| {
try zig_args.append("--libc");
try zig_args.append(libc_file.getPath(b));
} else if (b.libc_file) |libc_file| {
try zig_args.append("--libc");
try zig_args.append(libc_file);
}
try zig_args.append("--cache-dir");
try zig_args.append(b.cache_root.path orelse ".");
try zig_args.append("--global-cache-dir");
try zig_args.append(b.global_cache_root.path orelse ".");
try zig_args.append("--name");
try zig_args.append(self.name);
if (self.linkage) |some| switch (some) {
.dynamic => try zig_args.append("-dynamic"),
.static => try zig_args.append("-static"),
};
if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic) {
if (self.version) |version| {
try zig_args.append("--version");
try zig_args.append(b.fmt("{}", .{version}));
}
if (self.rootModuleTarget().isDarwin()) {
const install_name = self.install_name orelse b.fmt("@rpath/{s}{s}{s}", .{
self.rootModuleTarget().libPrefix(),
self.name,
self.rootModuleTarget().dynamicLibSuffix(),
});
try zig_args.append("-install_name");
try zig_args.append(install_name);
}
}
if (self.entitlements) |entitlements| {
try zig_args.appendSlice(&[_][]const u8{ "--entitlements", entitlements });
}
if (self.pagezero_size) |pagezero_size| {
const size = try std.fmt.allocPrint(b.allocator, "{x}", .{pagezero_size});
try zig_args.appendSlice(&[_][]const u8{ "-pagezero_size", size });
}
if (self.headerpad_size) |headerpad_size| {
const size = try std.fmt.allocPrint(b.allocator, "{x}", .{headerpad_size});
try zig_args.appendSlice(&[_][]const u8{ "-headerpad", size });
}
if (self.headerpad_max_install_names) {
try zig_args.append("-headerpad_max_install_names");
}
if (self.dead_strip_dylibs) {
try zig_args.append("-dead_strip_dylibs");
}
try addFlag(&zig_args, "compiler-rt", self.bundle_compiler_rt);
try addFlag(&zig_args, "dll-export-fns", self.dll_export_fns);
if (self.rdynamic) {
try zig_args.append("-rdynamic");
}
if (self.import_memory) {
try zig_args.append("--import-memory");
}
if (self.export_memory) {
try zig_args.append("--export-memory");
}
if (self.import_symbols) {
try zig_args.append("--import-symbols");
}
if (self.import_table) {
try zig_args.append("--import-table");
}
if (self.export_table) {
try zig_args.append("--export-table");
}
if (self.initial_memory) |initial_memory| {
try zig_args.append(b.fmt("--initial-memory={d}", .{initial_memory}));
}
if (self.max_memory) |max_memory| {
try zig_args.append(b.fmt("--max-memory={d}", .{max_memory}));
}
if (self.shared_memory) {
try zig_args.append("--shared-memory");
}
if (self.global_base) |global_base| {
try zig_args.append(b.fmt("--global-base={d}", .{global_base}));
}
if (self.wasi_exec_model) |model| {
try zig_args.append(b.fmt("-mexec-model={s}", .{@tagName(model)}));
}
if (self.linker_script) |linker_script| {
try zig_args.append("--script");
try zig_args.append(linker_script.getPath(b));
}
if (self.version_script) |version_script| {
try zig_args.append("--version-script");
try zig_args.append(b.pathFromRoot(version_script));
}
if (self.kind == .@"test") {
if (self.exec_cmd_args) |exec_cmd_args| {
for (exec_cmd_args) |cmd_arg| {
if (cmd_arg) |arg| {
try zig_args.append("--test-cmd");
try zig_args.append(arg);
} else {
try zig_args.append("--test-cmd-bin");
}
}
}
}
try self.appendModuleArgs(&zig_args);
if (b.sysroot) |sysroot| {
try zig_args.appendSlice(&[_][]const u8{ "--sysroot", sysroot });
}
for (b.search_prefixes.items) |search_prefix| {
var prefix_dir = fs.cwd().openDir(search_prefix, .{}) catch |err| {
return step.fail("unable to open prefix directory '{s}': {s}", .{
search_prefix, @errorName(err),
});
};
defer prefix_dir.close();
// Avoid passing -L and -I flags for nonexistent directories.
// This prevents a warning, that should probably be upgraded to an error in Zig's
// CLI parsing code, when the linker sees an -L directory that does not exist.
if (prefix_dir.accessZ("lib", .{})) |_| {
try zig_args.appendSlice(&.{
"-L", try fs.path.join(b.allocator, &.{ search_prefix, "lib" }),
});
} else |err| switch (err) {
error.FileNotFound => {},
else => |e| return step.fail("unable to access '{s}/lib' directory: {s}", .{
search_prefix, @errorName(e),
}),
}
if (prefix_dir.accessZ("include", .{})) |_| {
try zig_args.appendSlice(&.{
"-I", try fs.path.join(b.allocator, &.{ search_prefix, "include" }),
});
} else |err| switch (err) {
error.FileNotFound => {},
else => |e| return step.fail("unable to access '{s}/include' directory: {s}", .{
search_prefix, @errorName(e),
}),
}
}
if (self.rc_includes != .any) {
try zig_args.append("-rcincludes");
try zig_args.append(@tagName(self.rc_includes));
}
try addFlag(&zig_args, "each-lib-rpath", self.each_lib_rpath);
if (self.build_id) |build_id| {
try zig_args.append(switch (build_id) {
.hexstring => |hs| b.fmt("--build-id=0x{s}", .{
std.fmt.fmtSliceHexLower(hs.toSlice()),
}),
.none, .fast, .uuid, .sha1, .md5 => b.fmt("--build-id={s}", .{@tagName(build_id)}),
});
}
if (self.zig_lib_dir) |dir| {
try zig_args.append("--zig-lib-dir");
try zig_args.append(dir.getPath(b));
}
try addFlag(&zig_args, "PIE", self.pie);
try addFlag(&zig_args, "lto", self.want_lto);
if (self.subsystem) |subsystem| {
try zig_args.append("--subsystem");
try zig_args.append(switch (subsystem) {
.Console => "console",
.Windows => "windows",
.Posix => "posix",
.Native => "native",
.EfiApplication => "efi_application",
.EfiBootServiceDriver => "efi_boot_service_driver",
.EfiRom => "efi_rom",
.EfiRuntimeDriver => "efi_runtime_driver",
});
}
if (self.error_limit) |err_limit| try zig_args.appendSlice(&.{
"--error-limit",
b.fmt("{}", .{err_limit}),
});
try zig_args.append("--listen=-");
// Windows has an argument length limit of 32,766 characters, macOS 262,144 and Linux
// 2,097,152. If our args exceed 30 KiB, we instead write them to a "response file" and
// pass that to zig, e.g. via 'zig build-lib @args.rsp'
// See @file syntax here: https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html
var args_length: usize = 0;
for (zig_args.items) |arg| {
args_length += arg.len + 1; // +1 to account for null terminator
}
if (args_length >= 30 * 1024) {
try b.cache_root.handle.makePath("args");
const args_to_escape = zig_args.items[2..];
var escaped_args = try ArrayList([]const u8).initCapacity(b.allocator, args_to_escape.len);
arg_blk: for (args_to_escape) |arg| {
for (arg, 0..) |c, arg_idx| {
if (c == '\\' or c == '"') {
// Slow path for arguments that need to be escaped. We'll need to allocate and copy
var escaped = try ArrayList(u8).initCapacity(b.allocator, arg.len + 1);
const writer = escaped.writer();
try writer.writeAll(arg[0..arg_idx]);
for (arg[arg_idx..]) |to_escape| {
if (to_escape == '\\' or to_escape == '"') try writer.writeByte('\\');
try writer.writeByte(to_escape);
}
escaped_args.appendAssumeCapacity(escaped.items);
continue :arg_blk;
}
}
escaped_args.appendAssumeCapacity(arg); // no escaping needed so just use original argument
}
// Write the args to zig-cache/args/<SHA256 hash of args> to avoid conflicts with
// other zig build commands running in parallel.
const partially_quoted = try std.mem.join(b.allocator, "\" \"", escaped_args.items);
const args = try std.mem.concat(b.allocator, u8, &[_][]const u8{ "\"", partially_quoted, "\"" });
var args_hash: [Sha256.digest_length]u8 = undefined;
Sha256.hash(args, &args_hash, .{});
var args_hex_hash: [Sha256.digest_length * 2]u8 = undefined;
_ = try std.fmt.bufPrint(
&args_hex_hash,
"{s}",
.{std.fmt.fmtSliceHexLower(&args_hash)},
);
const args_file = "args" ++ fs.path.sep_str ++ args_hex_hash;
try b.cache_root.handle.writeFile(args_file, args);
const resolved_args_file = try mem.concat(b.allocator, u8, &.{
"@",
try b.cache_root.join(b.allocator, &.{args_file}),
});
zig_args.shrinkRetainingCapacity(2);
try zig_args.append(resolved_args_file);
}
const maybe_output_bin_path = step.evalZigProcess(zig_args.items, prog_node) catch |err| switch (err) {
error.NeedCompileErrorCheck => {
assert(self.expect_errors != null);
try checkCompileErrors(self);
return;
},
else => |e| return e,
};
// Update generated files
if (maybe_output_bin_path) |output_bin_path| {
const output_dir = fs.path.dirname(output_bin_path).?;
if (self.emit_directory) |lp| {
lp.path = output_dir;
}
// -femit-bin[=path] (default) Output machine code
if (self.generated_bin) |bin| {
bin.path = b.pathJoin(&.{ output_dir, self.out_filename });
}
const sep = std.fs.path.sep;
// output PDB if someone requested it
if (self.generated_pdb) |pdb| {
pdb.path = b.fmt("{s}{c}{s}.pdb", .{ output_dir, sep, self.name });
}
// -femit-implib[=path] (default) Produce an import .lib when building a Windows DLL
if (self.generated_implib) |implib| {
implib.path = b.fmt("{s}{c}{s}.lib", .{ output_dir, sep, self.name });
}
// -femit-h[=path] Generate a C header file (.h)
if (self.generated_h) |lp| {
lp.path = b.fmt("{s}{c}{s}.h", .{ output_dir, sep, self.name });
}
// -femit-docs[=path] Create a docs/ dir with html documentation
if (self.generated_docs) |generated_docs| {
generated_docs.path = b.pathJoin(&.{ output_dir, "docs" });
}
// -femit-asm[=path] Output .s (assembly code)
if (self.generated_asm) |lp| {
lp.path = b.fmt("{s}{c}{s}.s", .{ output_dir, sep, self.name });
}
// -femit-llvm-ir[=path] Produce a .ll file with optimized LLVM IR (requires LLVM extensions)
if (self.generated_llvm_ir) |lp| {
lp.path = b.fmt("{s}{c}{s}.ll", .{ output_dir, sep, self.name });
}
// -femit-llvm-bc[=path] Produce an optimized LLVM module as a .bc file (requires LLVM extensions)
if (self.generated_llvm_bc) |lp| {
lp.path = b.fmt("{s}{c}{s}.bc", .{ output_dir, sep, self.name });
}
}
if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic and
self.version != null and std.Build.wantSharedLibSymLinks(self.rootModuleTarget()))
{
try doAtomicSymLinks(
step,
self.getEmittedBin().getPath(b),
self.major_only_filename.?,
self.name_only_filename.?,
);
}
}
pub fn doAtomicSymLinks(
step: *Step,
output_path: []const u8,
filename_major_only: []const u8,
filename_name_only: []const u8,
) !void {
const arena = step.owner.allocator;
const out_dir = fs.path.dirname(output_path) orelse ".";
const out_basename = fs.path.basename(output_path);
// sym link for libfoo.so.1 to libfoo.so.1.2.3
const major_only_path = try fs.path.join(arena, &.{ out_dir, filename_major_only });
fs.atomicSymLink(arena, out_basename, major_only_path) catch |err| {
return step.fail("unable to symlink {s} -> {s}: {s}", .{
major_only_path, out_basename, @errorName(err),
});
};
// sym link for libfoo.so to libfoo.so.1
const name_only_path = try fs.path.join(arena, &.{ out_dir, filename_name_only });
fs.atomicSymLink(arena, filename_major_only, name_only_path) catch |err| {
return step.fail("Unable to symlink {s} -> {s}: {s}", .{
name_only_path, filename_major_only, @errorName(err),
});
};
}
fn execPkgConfigList(self: *std.Build, out_code: *u8) (PkgConfigError || RunError)![]const PkgConfigPkg {
const stdout = try self.runAllowFail(&[_][]const u8{ "pkg-config", "--list-all" }, out_code, .Ignore);
var list = ArrayList(PkgConfigPkg).init(self.allocator);
errdefer list.deinit();
var line_it = mem.tokenizeAny(u8, stdout, "\r\n");
while (line_it.next()) |line| {
if (mem.trim(u8, line, " \t").len == 0) continue;
var tok_it = mem.tokenizeAny(u8, line, " \t");
try list.append(PkgConfigPkg{
.name = tok_it.next() orelse return error.PkgConfigInvalidOutput,
.desc = tok_it.rest(),
});
}
return list.toOwnedSlice();
}
fn getPkgConfigList(self: *std.Build) ![]const PkgConfigPkg {
if (self.pkg_config_pkg_list) |res| {
return res;
}
var code: u8 = undefined;
if (execPkgConfigList(self, &code)) |list| {
self.pkg_config_pkg_list = list;
return list;
} else |err| {
const result = switch (err) {
error.ProcessTerminated => error.PkgConfigCrashed,
error.ExecNotSupported => error.PkgConfigFailed,
error.ExitCodeFailure => error.PkgConfigFailed,
error.FileNotFound => error.PkgConfigNotInstalled,
error.InvalidName => error.PkgConfigNotInstalled,
error.PkgConfigInvalidOutput => error.PkgConfigInvalidOutput,
else => return err,
};
self.pkg_config_pkg_list = result;
return result;
}
}
fn addFlag(args: *ArrayList([]const u8), comptime name: []const u8, opt: ?bool) !void {
const cond = opt orelse return;
try args.ensureUnusedCapacity(1);
if (cond) {
args.appendAssumeCapacity("-f" ++ name);
} else {
args.appendAssumeCapacity("-fno-" ++ name);
}
}
fn checkCompileErrors(self: *Compile) !void {
// Clear this field so that it does not get printed by the build runner.
const actual_eb = self.step.result_error_bundle;
self.step.result_error_bundle = std.zig.ErrorBundle.empty;
const arena = self.step.owner.allocator;
var actual_stderr_list = std.ArrayList(u8).init(arena);
try actual_eb.renderToWriter(.{
.ttyconf = .no_color,
.include_reference_trace = false,
.include_source_line = false,
}, actual_stderr_list.writer());
const actual_stderr = try actual_stderr_list.toOwnedSlice();
// Render the expected lines into a string that we can compare verbatim.
var expected_generated = std.ArrayList(u8).init(arena);
const expect_errors = self.expect_errors.?;
var actual_line_it = mem.splitScalar(u8, actual_stderr, '\n');
// TODO merge this with the testing.expectEqualStrings logic, and also CheckFile
switch (expect_errors) {
.contains => |expect_line| {
while (actual_line_it.next()) |actual_line| {
if (!matchCompileError(actual_line, expect_line)) continue;
return;
}
return self.step.fail(
\\
\\========= should contain: ===============
\\{s}
\\========= but not found: ================
\\{s}
\\=========================================
, .{ expect_line, actual_stderr });
},
.exact => |expect_lines| {
for (expect_lines) |expect_line| {
const actual_line = actual_line_it.next() orelse {
try expected_generated.appendSlice(expect_line);
try expected_generated.append('\n');
continue;
};
if (matchCompileError(actual_line, expect_line)) {
try expected_generated.appendSlice(actual_line);
try expected_generated.append('\n');
continue;
}
try expected_generated.appendSlice(expect_line);
try expected_generated.append('\n');
}
if (mem.eql(u8, expected_generated.items, actual_stderr)) return;
return self.step.fail(
\\
\\========= expected: =====================
\\{s}
\\========= but found: ====================
\\{s}
\\=========================================
, .{ expected_generated.items, actual_stderr });
},
}
}
fn matchCompileError(actual: []const u8, expected: []const u8) bool {
if (mem.endsWith(u8, actual, expected)) return true;
if (mem.startsWith(u8, expected, ":?:?: ")) {
if (mem.endsWith(u8, actual, expected[":?:?: ".len..])) return true;
}
// We scan for /?/ in expected line and if there is a match, we match everything
// up to and after /?/.
const expected_trim = mem.trim(u8, expected, " ");
if (mem.indexOf(u8, expected_trim, "/?/")) |index| {
const actual_trim = mem.trim(u8, actual, " ");
const lhs = expected_trim[0..index];
const rhs = expected_trim[index + "/?/".len ..];
if (mem.startsWith(u8, actual_trim, lhs) and mem.endsWith(u8, actual_trim, rhs)) return true;
}
return false;
}
pub fn rootModuleTarget(c: *Compile) std.Target {
// The root module is always given a target, so we know this to be non-null.
return c.root_module.target.?.target;
}