const builtin = @import("builtin"); const std = @import("std"); const mem = std.mem; const fs = std.fs; const assert = std.debug.assert; const panic = std.debug.panic; const ArrayList = std.ArrayList; const StringHashMap = std.StringHashMap; const Sha256 = std.crypto.hash.sha2.Sha256; const Allocator = mem.Allocator; const Step = std.Build.Step; const LazyPath = std.Build.LazyPath; const PkgConfigPkg = std.Build.PkgConfigPkg; const PkgConfigError = std.Build.PkgConfigError; const RunError = std.Build.RunError; const Module = std.Build.Module; const InstallDir = std.Build.InstallDir; const GeneratedFile = std.Build.GeneratedFile; const Compile = @This(); pub const base_id: Step.Id = .compile; step: Step, root_module: Module, name: []const u8, linker_script: ?LazyPath = null, version_script: ?[]const u8 = null, out_filename: []const u8, out_lib_filename: []const u8, linkage: ?Linkage = null, version: ?std.SemanticVersion, kind: Kind, major_only_filename: ?[]const u8, name_only_filename: ?[]const u8, // keep in sync with src/link.zig:CompressDebugSections compress_debug_sections: enum { none, zlib, zstd } = .none, verbose_link: bool, verbose_cc: bool, bundle_compiler_rt: ?bool = null, rdynamic: bool, import_memory: bool = false, export_memory: bool = false, /// For WebAssembly targets, this will allow for undefined symbols to /// be imported from the host environment. import_symbols: bool = false, import_table: bool = false, export_table: bool = false, initial_memory: ?u64 = null, max_memory: ?u64 = null, shared_memory: bool = false, global_base: ?u64 = null, /// Set via options; intended to be read-only after that. zig_lib_dir: ?LazyPath, exec_cmd_args: ?[]const ?[]const u8, filter: ?[]const u8, test_evented_io: bool = false, test_runner: ?[]const u8, test_server_mode: bool, wasi_exec_model: ?std.builtin.WasiExecModel = null, installed_headers: ArrayList(*Step), // keep in sync with src/Compilation.zig:RcIncludes /// Behavior of automatic detection of include directories when compiling .rc files. /// any: Use MSVC if available, fall back to MinGW. /// msvc: Use MSVC include paths (must be present on the system). /// gnu: Use MinGW include paths (distributed with Zig). /// none: Do not use any autodetected include paths. rc_includes: enum { any, msvc, gnu, none } = .any, /// (Windows) .manifest file to embed in the compilation /// Set via options; intended to be read-only after that. win32_manifest: ?LazyPath = null, installed_path: ?[]const u8, /// Base address for an executable image. image_base: ?u64 = null, libc_file: ?LazyPath = null, each_lib_rpath: ?bool = null, /// On ELF targets, this will emit a link section called ".note.gnu.build-id" /// which can be used to coordinate a stripped binary with its debug symbols. /// As an example, the bloaty project refuses to work unless its inputs have /// build ids, in order to prevent accidental mismatches. /// The default is to not include this section because it slows down linking. build_id: ?std.zig.BuildId = null, /// Create a .eh_frame_hdr section and a PT_GNU_EH_FRAME segment in the ELF /// file. link_eh_frame_hdr: bool = false, link_emit_relocs: bool = false, /// Place every function in its own section so that unused ones may be /// safely garbage-collected during the linking phase. link_function_sections: bool = false, /// Place every data in its own section so that unused ones may be /// safely garbage-collected during the linking phase. link_data_sections: bool = false, /// Remove functions and data that are unreachable by the entry point or /// exported symbols. link_gc_sections: ?bool = null, /// (Windows) Whether or not to enable ASLR. Maps to the /DYNAMICBASE[:NO] linker argument. linker_dynamicbase: bool = true, linker_allow_shlib_undefined: ?bool = null, /// Permit read-only relocations in read-only segments. Disallowed by default. link_z_notext: bool = false, /// Force all relocations to be read-only after processing. link_z_relro: bool = true, /// Allow relocations to be lazily processed after load. link_z_lazy: bool = false, /// Common page size link_z_common_page_size: ?u64 = null, /// Maximum page size link_z_max_page_size: ?u64 = null, /// (Darwin) Install name for the dylib install_name: ?[]const u8 = null, /// (Darwin) Path to entitlements file entitlements: ?[]const u8 = null, /// (Darwin) Size of the pagezero segment. pagezero_size: ?u64 = null, /// (Darwin) Set size of the padding between the end of load commands /// and start of `__TEXT,__text` section. headerpad_size: ?u32 = null, /// (Darwin) Automatically Set size of the padding between the end of load commands /// and start of `__TEXT,__text` section to a value fitting all paths expanded to MAXPATHLEN. headerpad_max_install_names: bool = false, /// (Darwin) Remove dylibs that are unreachable by the entry point or exported symbols. dead_strip_dylibs: bool = false, /// Position Independent Executable pie: ?bool = null, dll_export_fns: ?bool = null, subsystem: ?std.Target.SubSystem = null, /// How the linker must handle the entry point of the executable. entry: Entry = .default, /// List of symbols forced as undefined in the symbol table /// thus forcing their resolution by the linker. /// Corresponds to `-u ` for ELF/MachO and `/include:` for COFF/PE. force_undefined_symbols: std.StringHashMap(void), /// Overrides the default stack size stack_size: ?u64 = null, want_lto: ?bool = null, use_llvm: ?bool, use_lld: ?bool, /// This is an advanced setting that can change the intent of this Compile step. /// If this value is non-null, it means that this Compile step exists to /// check for compile errors and return *success* if they match, and failure /// otherwise. expect_errors: ?ExpectedCompileErrors = null, emit_directory: ?*GeneratedFile, generated_docs: ?*GeneratedFile, generated_asm: ?*GeneratedFile, generated_bin: ?*GeneratedFile, generated_pdb: ?*GeneratedFile, generated_implib: ?*GeneratedFile, generated_llvm_bc: ?*GeneratedFile, generated_llvm_ir: ?*GeneratedFile, generated_h: ?*GeneratedFile, /// The maximum number of distinct errors within a compilation step /// Defaults to `std.math.maxInt(u16)` error_limit: ?u32 = null, /// Computed during make(). is_linking_libc: bool = false, /// Computed during make(). is_linking_libcpp: bool = false, pub const ExpectedCompileErrors = union(enum) { contains: []const u8, exact: []const []const u8, }; pub const Entry = union(enum) { /// Let the compiler decide whether to make an entry point and what to name /// it. default, /// The executable will have no entry point. disabled, /// The executable will have an entry point with the default symbol name. enabled, /// The executable will have an entry point with the specified symbol name. symbol_name: []const u8, }; pub const Options = struct { name: []const u8, root_module: Module.CreateOptions, kind: Kind, linkage: ?Linkage = null, version: ?std.SemanticVersion = null, max_rss: usize = 0, filter: ?[]const u8 = null, test_runner: ?[]const u8 = null, use_llvm: ?bool = null, use_lld: ?bool = null, zig_lib_dir: ?LazyPath = null, /// Embed a `.manifest` file in the compilation if the object format supports it. /// https://learn.microsoft.com/en-us/windows/win32/sbscs/manifest-files-reference /// Manifest files must have the extension `.manifest`. /// Can be set regardless of target. The `.manifest` file will be ignored /// if the target object format does not support embedded manifests. win32_manifest: ?LazyPath = null, }; pub const Kind = enum { exe, lib, obj, @"test", }; pub const Linkage = enum { dynamic, static }; pub fn create(owner: *std.Build, options: Options) *Compile { const name = owner.dupe(options.name); if (mem.indexOf(u8, name, "/") != null or mem.indexOf(u8, name, "\\") != null) { panic("invalid name: '{s}'. It looks like a file path, but it is supposed to be the library or application name.", .{name}); } // Avoid the common case of the step name looking like "zig test test". const name_adjusted = if (options.kind == .@"test" and mem.eql(u8, name, "test")) "" else owner.fmt("{s} ", .{name}); const target = options.root_module.target.?.target; const step_name = owner.fmt("{s} {s}{s} {s}", .{ switch (options.kind) { .exe => "zig build-exe", .lib => "zig build-lib", .obj => "zig build-obj", .@"test" => "zig test", }, name_adjusted, @tagName(options.root_module.optimize orelse .Debug), target.zigTriple(owner.allocator) catch @panic("OOM"), }); const out_filename = std.zig.binNameAlloc(owner.allocator, .{ .root_name = name, .target = target, .output_mode = switch (options.kind) { .lib => .Lib, .obj => .Obj, .exe, .@"test" => .Exe, }, .link_mode = if (options.linkage) |some| @as(std.builtin.LinkMode, switch (some) { .dynamic => .Dynamic, .static => .Static, }) else null, .version = options.version, }) catch @panic("OOM"); const self = owner.allocator.create(Compile) catch @panic("OOM"); self.* = .{ .root_module = undefined, .verbose_link = false, .verbose_cc = false, .linkage = options.linkage, .kind = options.kind, .name = name, .step = Step.init(.{ .id = base_id, .name = step_name, .owner = owner, .makeFn = make, .max_rss = options.max_rss, }), .version = options.version, .out_filename = out_filename, .out_lib_filename = undefined, .major_only_filename = null, .name_only_filename = null, .installed_headers = ArrayList(*Step).init(owner.allocator), .zig_lib_dir = null, .exec_cmd_args = null, .filter = options.filter, .test_runner = options.test_runner, .test_server_mode = options.test_runner == null, .rdynamic = false, .installed_path = null, .force_undefined_symbols = StringHashMap(void).init(owner.allocator), .emit_directory = null, .generated_docs = null, .generated_asm = null, .generated_bin = null, .generated_pdb = null, .generated_implib = null, .generated_llvm_bc = null, .generated_llvm_ir = null, .generated_h = null, .use_llvm = options.use_llvm, .use_lld = options.use_lld, }; self.root_module.init(owner, options.root_module, self); if (options.zig_lib_dir) |lp| { self.zig_lib_dir = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } // Only the PE/COFF format has a Resource Table which is where the manifest // gets embedded, so for any other target the manifest file is just ignored. if (target.ofmt == .coff) { if (options.win32_manifest) |lp| { self.win32_manifest = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } } if (self.kind == .lib) { if (self.linkage != null and self.linkage.? == .static) { self.out_lib_filename = self.out_filename; } else if (self.version) |version| { if (target.isDarwin()) { self.major_only_filename = owner.fmt("lib{s}.{d}.dylib", .{ self.name, version.major, }); self.name_only_filename = owner.fmt("lib{s}.dylib", .{self.name}); self.out_lib_filename = self.out_filename; } else if (target.os.tag == .windows) { self.out_lib_filename = owner.fmt("{s}.lib", .{self.name}); } else { self.major_only_filename = owner.fmt("lib{s}.so.{d}", .{ self.name, version.major }); self.name_only_filename = owner.fmt("lib{s}.so", .{self.name}); self.out_lib_filename = self.out_filename; } } else { if (target.isDarwin()) { self.out_lib_filename = self.out_filename; } else if (target.os.tag == .windows) { self.out_lib_filename = owner.fmt("{s}.lib", .{self.name}); } else { self.out_lib_filename = self.out_filename; } } } return self; } pub fn installHeader(cs: *Compile, src_path: []const u8, dest_rel_path: []const u8) void { const b = cs.step.owner; const install_file = b.addInstallHeaderFile(src_path, dest_rel_path); b.getInstallStep().dependOn(&install_file.step); cs.installed_headers.append(&install_file.step) catch @panic("OOM"); } pub const InstallConfigHeaderOptions = struct { install_dir: InstallDir = .header, dest_rel_path: ?[]const u8 = null, }; pub fn installConfigHeader( cs: *Compile, config_header: *Step.ConfigHeader, options: InstallConfigHeaderOptions, ) void { const dest_rel_path = options.dest_rel_path orelse config_header.include_path; const b = cs.step.owner; const install_file = b.addInstallFileWithDir( .{ .generated = &config_header.output_file }, options.install_dir, dest_rel_path, ); install_file.step.dependOn(&config_header.step); b.getInstallStep().dependOn(&install_file.step); cs.installed_headers.append(&install_file.step) catch @panic("OOM"); } pub fn installHeadersDirectory( a: *Compile, src_dir_path: []const u8, dest_rel_path: []const u8, ) void { return installHeadersDirectoryOptions(a, .{ .source_dir = .{ .path = src_dir_path }, .install_dir = .header, .install_subdir = dest_rel_path, }); } pub fn installHeadersDirectoryOptions( cs: *Compile, options: std.Build.Step.InstallDir.Options, ) void { const b = cs.step.owner; const install_dir = b.addInstallDirectory(options); b.getInstallStep().dependOn(&install_dir.step); cs.installed_headers.append(&install_dir.step) catch @panic("OOM"); } pub fn installLibraryHeaders(cs: *Compile, l: *Compile) void { assert(l.kind == .lib); const b = cs.step.owner; const install_step = b.getInstallStep(); // Copy each element from installed_headers, modifying the builder // to be the new parent's builder. for (l.installed_headers.items) |step| { const step_copy = switch (step.id) { inline .install_file, .install_dir => |id| blk: { const T = id.Type(); const ptr = b.allocator.create(T) catch @panic("OOM"); ptr.* = step.cast(T).?.*; ptr.dest_builder = b; break :blk &ptr.step; }, else => unreachable, }; cs.installed_headers.append(step_copy) catch @panic("OOM"); install_step.dependOn(step_copy); } cs.installed_headers.appendSlice(l.installed_headers.items) catch @panic("OOM"); } pub fn addObjCopy(cs: *Compile, options: Step.ObjCopy.Options) *Step.ObjCopy { const b = cs.step.owner; var copy = options; if (copy.basename == null) { if (options.format) |f| { copy.basename = b.fmt("{s}.{s}", .{ cs.name, @tagName(f) }); } else { copy.basename = cs.name; } } return b.addObjCopy(cs.getEmittedBin(), copy); } /// This function would run in the context of the package that created the executable, /// which is undesirable when running an executable provided by a dependency package. pub const run = @compileError("deprecated; use std.Build.addRunArtifact"); /// This function would install in the context of the package that created the artifact, /// which is undesirable when installing an artifact provided by a dependency package. pub const install = @compileError("deprecated; use std.Build.installArtifact"); pub fn checkObject(self: *Compile) *Step.CheckObject { return Step.CheckObject.create(self.step.owner, self.getEmittedBin(), self.rootModuleTarget().ofmt); } /// deprecated: use `setLinkerScript` pub const setLinkerScriptPath = setLinkerScript; pub fn setLinkerScript(self: *Compile, source: LazyPath) void { const b = self.step.owner; self.linker_script = source.dupe(b); source.addStepDependencies(&self.step); } pub fn forceUndefinedSymbol(self: *Compile, symbol_name: []const u8) void { const b = self.step.owner; self.force_undefined_symbols.put(b.dupe(symbol_name), {}) catch @panic("OOM"); } /// Returns whether the library, executable, or object depends on a particular system library. /// Includes transitive dependencies. pub fn dependsOnSystemLibrary(self: *const Compile, name: []const u8) bool { var is_linking_libc = false; var is_linking_libcpp = false; var it = self.root_module.iterateDependencies(self, true); while (it.next()) |module| { for (module.link_objects.items) |link_object| { switch (link_object) { .system_lib => |lib| if (mem.eql(u8, lib.name, name)) return true, else => continue, } } is_linking_libc = is_linking_libc or module.link_libcpp == true; is_linking_libcpp = is_linking_libcpp or module.link_libcpp == true; } if (self.rootModuleTarget().is_libc_lib_name(name)) { return is_linking_libc; } if (self.rootModuleTarget().is_libcpp_lib_name(name)) { return is_linking_libcpp; } return false; } pub fn isDynamicLibrary(self: *const Compile) bool { return self.kind == .lib and self.linkage == Linkage.dynamic; } pub fn isStaticLibrary(self: *const Compile) bool { return self.kind == .lib and self.linkage != Linkage.dynamic; } pub fn producesPdbFile(self: *Compile) bool { const target = self.rootModuleTarget(); // TODO: Is this right? Isn't PDB for *any* PE/COFF file? // TODO: just share this logic with the compiler, silly! switch (target.os.tag) { .windows, .uefi => {}, else => return false, } if (target.ofmt == .c) return false; if (self.root_module.strip == true or (self.root_module.strip == null and self.root_module.optimize == .ReleaseSmall)) { return false; } return self.isDynamicLibrary() or self.kind == .exe or self.kind == .@"test"; } pub fn producesImplib(self: *Compile) bool { return self.isDynamicLibrary() and self.rootModuleTarget().os.tag == .windows; } pub fn linkLibC(self: *Compile) void { self.root_module.link_libc = true; } pub fn linkLibCpp(self: *Compile) void { self.root_module.link_libcpp = true; } /// Deprecated. Use `c.root_module.addCMacro`. pub fn defineCMacro(c: *Compile, name: []const u8, value: ?[]const u8) void { c.root_module.addCMacro(name, value orelse "1"); } /// Run pkg-config for the given library name and parse the output, returning the arguments /// that should be passed to zig to link the given library. fn runPkgConfig(self: *Compile, lib_name: []const u8) ![]const []const u8 { const b = self.step.owner; const pkg_name = match: { // First we have to map the library name to pkg config name. Unfortunately, // there are several examples where this is not straightforward: // -lSDL2 -> pkg-config sdl2 // -lgdk-3 -> pkg-config gdk-3.0 // -latk-1.0 -> pkg-config atk const pkgs = try getPkgConfigList(b); // Exact match means instant winner. for (pkgs) |pkg| { if (mem.eql(u8, pkg.name, lib_name)) { break :match pkg.name; } } // Next we'll try ignoring case. for (pkgs) |pkg| { if (std.ascii.eqlIgnoreCase(pkg.name, lib_name)) { break :match pkg.name; } } // Now try appending ".0". for (pkgs) |pkg| { if (std.ascii.indexOfIgnoreCase(pkg.name, lib_name)) |pos| { if (pos != 0) continue; if (mem.eql(u8, pkg.name[lib_name.len..], ".0")) { break :match pkg.name; } } } // Trimming "-1.0". if (mem.endsWith(u8, lib_name, "-1.0")) { const trimmed_lib_name = lib_name[0 .. lib_name.len - "-1.0".len]; for (pkgs) |pkg| { if (std.ascii.eqlIgnoreCase(pkg.name, trimmed_lib_name)) { break :match pkg.name; } } } return error.PackageNotFound; }; var code: u8 = undefined; const stdout = if (b.runAllowFail(&[_][]const u8{ "pkg-config", pkg_name, "--cflags", "--libs", }, &code, .Ignore)) |stdout| stdout else |err| switch (err) { error.ProcessTerminated => return error.PkgConfigCrashed, error.ExecNotSupported => return error.PkgConfigFailed, error.ExitCodeFailure => return error.PkgConfigFailed, error.FileNotFound => return error.PkgConfigNotInstalled, else => return err, }; var zig_args = ArrayList([]const u8).init(b.allocator); defer zig_args.deinit(); var it = mem.tokenizeAny(u8, stdout, " \r\n\t"); while (it.next()) |tok| { if (mem.eql(u8, tok, "-I")) { const dir = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-I", dir }); } else if (mem.startsWith(u8, tok, "-I")) { try zig_args.append(tok); } else if (mem.eql(u8, tok, "-L")) { const dir = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-L", dir }); } else if (mem.startsWith(u8, tok, "-L")) { try zig_args.append(tok); } else if (mem.eql(u8, tok, "-l")) { const lib = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-l", lib }); } else if (mem.startsWith(u8, tok, "-l")) { try zig_args.append(tok); } else if (mem.eql(u8, tok, "-D")) { const macro = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-D", macro }); } else if (mem.startsWith(u8, tok, "-D")) { try zig_args.append(tok); } else if (b.debug_pkg_config) { return self.step.fail("unknown pkg-config flag '{s}'", .{tok}); } } return zig_args.toOwnedSlice(); } pub fn linkSystemLibrary(self: *Compile, name: []const u8) void { return self.root_module.linkSystemLibrary(name, .{}); } pub fn linkSystemLibrary2( self: *Compile, name: []const u8, options: Module.LinkSystemLibraryOptions, ) void { return self.root_module.linkSystemLibrary(name, options); } pub fn linkFramework(c: *Compile, name: []const u8) void { c.root_module.linkFramework(name, .{}); } /// Deprecated. Use `c.root_module.linkFramework`. pub fn linkFrameworkNeeded(c: *Compile, name: []const u8) void { c.root_module.linkFramework(name, .{ .needed = true }); } /// Deprecated. Use `c.root_module.linkFramework`. pub fn linkFrameworkWeak(c: *Compile, name: []const u8) void { c.root_module.linkFramework(name, .{ .weak = true }); } /// Handy when you have many C/C++ source files and want them all to have the same flags. pub fn addCSourceFiles(self: *Compile, options: Module.AddCSourceFilesOptions) void { self.root_module.addCSourceFiles(options); } pub fn addCSourceFile(self: *Compile, source: Module.CSourceFile) void { self.root_module.addCSourceFile(source); } /// Resource files must have the extension `.rc`. /// Can be called regardless of target. The .rc file will be ignored /// if the target object format does not support embedded resources. pub fn addWin32ResourceFile(self: *Compile, source: Module.RcSourceFile) void { self.root_module.addWin32ResourceFile(source); } pub fn setVerboseLink(self: *Compile, value: bool) void { self.verbose_link = value; } pub fn setVerboseCC(self: *Compile, value: bool) void { self.verbose_cc = value; } pub fn setLibCFile(self: *Compile, libc_file: ?LazyPath) void { const b = self.step.owner; self.libc_file = if (libc_file) |f| f.dupe(b) else null; } fn getEmittedFileGeneric(self: *Compile, output_file: *?*GeneratedFile) LazyPath { if (output_file.*) |g| { return .{ .generated = g }; } const arena = self.step.owner.allocator; const generated_file = arena.create(GeneratedFile) catch @panic("OOM"); generated_file.* = .{ .step = &self.step }; output_file.* = generated_file; return .{ .generated = generated_file }; } /// Returns the path to the directory that contains the emitted binary file. pub fn getEmittedBinDirectory(self: *Compile) LazyPath { _ = self.getEmittedBin(); return self.getEmittedFileGeneric(&self.emit_directory); } /// Returns the path to the generated executable, library or object file. /// To run an executable built with zig build, use `run`, or create an install step and invoke it. pub fn getEmittedBin(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_bin); } /// Returns the path to the generated import library. /// This function can only be called for libraries. pub fn getEmittedImplib(self: *Compile) LazyPath { assert(self.kind == .lib); return self.getEmittedFileGeneric(&self.generated_implib); } /// Returns the path to the generated header file. /// This function can only be called for libraries or objects. pub fn getEmittedH(self: *Compile) LazyPath { assert(self.kind != .exe and self.kind != .@"test"); return self.getEmittedFileGeneric(&self.generated_h); } /// Returns the generated PDB file. /// If the compilation does not produce a PDB file, this causes a FileNotFound error /// at build time. pub fn getEmittedPdb(self: *Compile) LazyPath { _ = self.getEmittedBin(); return self.getEmittedFileGeneric(&self.generated_pdb); } /// Returns the path to the generated documentation directory. pub fn getEmittedDocs(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_docs); } /// Returns the path to the generated assembly code. pub fn getEmittedAsm(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_asm); } /// Returns the path to the generated LLVM IR. pub fn getEmittedLlvmIr(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_llvm_ir); } /// Returns the path to the generated LLVM BC. pub fn getEmittedLlvmBc(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_llvm_bc); } pub fn addAssemblyFile(self: *Compile, source: LazyPath) void { self.root_module.addAssemblyFile(source); } pub fn addObjectFile(self: *Compile, source: LazyPath) void { self.root_module.addObjectFile(source); } pub fn addObject(self: *Compile, object: *Compile) void { self.root_module.addObject(object); } pub fn linkLibrary(self: *Compile, library: *Compile) void { self.root_module.linkLibrary(library); } pub fn addAfterIncludePath(self: *Compile, lazy_path: LazyPath) void { self.root_module.addAfterIncludePath(lazy_path); } pub fn addSystemIncludePath(self: *Compile, lazy_path: LazyPath) void { self.root_module.addSystemIncludePath(lazy_path); } pub fn addIncludePath(self: *Compile, lazy_path: LazyPath) void { self.root_module.addIncludePath(lazy_path); } pub fn addConfigHeader(self: *Compile, config_header: *Step.ConfigHeader) void { self.root_module.addConfigHeader(config_header); } pub fn addLibraryPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addLibraryPath(directory_path); } pub fn addRPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addRPath(directory_path); } pub fn addSystemFrameworkPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addSystemFrameworkPath(directory_path); } pub fn addFrameworkPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addFrameworkPath(directory_path); } pub fn setExecCmd(self: *Compile, args: []const ?[]const u8) void { const b = self.step.owner; assert(self.kind == .@"test"); const duped_args = b.allocator.alloc(?[]u8, args.len) catch @panic("OOM"); for (args, 0..) |arg, i| { duped_args[i] = if (arg) |a| b.dupe(a) else null; } self.exec_cmd_args = duped_args; } fn appendModuleArgs(cs: *Compile, zig_args: *ArrayList([]const u8)) !void { const b = cs.step.owner; // First, traverse the whole dependency graph and give every module a // unique name, ideally one named after what it's called somewhere in the // graph. It will help here to have both a mapping from module to name and // a set of all the currently-used names. var mod_names: std.AutoArrayHashMapUnmanaged(*Module, []const u8) = .{}; var names = std.StringHashMap(void).init(b.allocator); { var it = cs.root_module.iterateDependencies(null, false); _ = it.next(); // Skip over the root module. while (it.next()) |item| { // While we're traversing the root dependencies, let's make sure that no module names // have colons in them, since the CLI forbids it. We handle this for transitive // dependencies further down. if (std.mem.indexOfScalar(u8, item.name, ':') != null) { return cs.step.fail("module '{s}' contains a colon", .{item.name}); } var name = item.name; var n: usize = 0; while (names.contains(name)) { name = b.fmt("{s}{d}", .{ item.name, n }); n += 1; } try mod_names.put(b.allocator, item.module, name); try names.put(name, {}); } } // Since the module names given to the CLI are based off of the exposed // names, we already know that none of the CLI names have colons in them, // so there's no need to check that explicitly. // Every module in the graph is now named; output their definitions for (mod_names.keys(), mod_names.values()) |mod, name| { const root_src = mod.root_source_file orelse continue; const deps_str = try constructDepString(b.allocator, mod_names, mod.import_table); const src = root_src.getPath2(mod.owner, &cs.step); try zig_args.append("--mod"); try zig_args.append(b.fmt("{s}:{s}:{s}", .{ name, deps_str, src })); } // Lastly, output the root dependencies const deps_str = try constructDepString(b.allocator, mod_names, cs.root_module.import_table); if (deps_str.len > 0) { try zig_args.append("--deps"); try zig_args.append(deps_str); } } fn constructDepString( allocator: std.mem.Allocator, mod_names: std.AutoArrayHashMapUnmanaged(*Module, []const u8), deps: std.StringArrayHashMapUnmanaged(*Module), ) ![]const u8 { var deps_str = std.ArrayList(u8).init(allocator); var it = deps.iterator(); while (it.next()) |kv| { const expose = kv.key_ptr.*; const name = mod_names.get(kv.value_ptr.*).?; if (std.mem.eql(u8, expose, name)) { try deps_str.writer().print("{s},", .{name}); } else { try deps_str.writer().print("{s}={s},", .{ expose, name }); } } if (deps_str.items.len > 0) { return deps_str.items[0 .. deps_str.items.len - 1]; // omit trailing comma } else { return ""; } } fn getGeneratedFilePath(self: *Compile, comptime tag_name: []const u8, asking_step: ?*Step) []const u8 { const maybe_path: ?*GeneratedFile = @field(self, tag_name); const generated_file = maybe_path orelse { std.debug.getStderrMutex().lock(); const stderr = std.io.getStdErr(); std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {}; @panic("missing emit option for " ++ tag_name); }; const path = generated_file.path orelse { std.debug.getStderrMutex().lock(); const stderr = std.io.getStdErr(); std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {}; @panic(tag_name ++ " is null. Is there a missing step dependency?"); }; return path; } fn make(step: *Step, prog_node: *std.Progress.Node) !void { const b = step.owner; const self = @fieldParentPtr(Compile, "step", step); var zig_args = ArrayList([]const u8).init(b.allocator); defer zig_args.deinit(); try zig_args.append(b.zig_exe); const cmd = switch (self.kind) { .lib => "build-lib", .exe => "build-exe", .obj => "build-obj", .@"test" => "test", }; try zig_args.append(cmd); if (b.reference_trace) |some| { try zig_args.append(try std.fmt.allocPrint(b.allocator, "-freference-trace={d}", .{some})); } try addFlag(&zig_args, "llvm", self.use_llvm); try addFlag(&zig_args, "lld", self.use_lld); if (self.root_module.target.?.query.ofmt) |ofmt| { try zig_args.append(try std.fmt.allocPrint(b.allocator, "-ofmt={s}", .{@tagName(ofmt)})); } switch (self.entry) { .default => {}, .disabled => try zig_args.append("-fno-entry"), .enabled => try zig_args.append("-fentry"), .symbol_name => |entry_name| { try zig_args.append(try std.fmt.allocPrint(b.allocator, "-fentry={s}", .{entry_name})); }, } { var it = self.force_undefined_symbols.keyIterator(); while (it.next()) |symbol_name| { try zig_args.append("--force_undefined"); try zig_args.append(symbol_name.*); } } if (self.stack_size) |stack_size| { try zig_args.append("--stack"); try zig_args.append(try std.fmt.allocPrint(b.allocator, "{}", .{stack_size})); } { var seen_system_libs: std.StringHashMapUnmanaged(void) = .{}; var frameworks: std.StringArrayHashMapUnmanaged(Module.LinkFrameworkOptions) = .{}; var prev_has_cflags = false; var prev_has_rcflags = false; var prev_search_strategy: Module.SystemLib.SearchStrategy = .paths_first; var prev_preferred_link_mode: std.builtin.LinkMode = .Dynamic; // Track the number of positional arguments so that a nice error can be // emitted if there is nothing to link. var total_linker_objects: usize = 0; if (self.root_module.root_source_file) |lp| { try zig_args.append(lp.getPath(b)); total_linker_objects += 1; } try self.root_module.appendZigProcessFlags(&zig_args, step); { // Fully recursive iteration including dynamic libraries to detect // libc and libc++ linkage. var it = self.root_module.iterateDependencies(self, true); while (it.next()) |key| { if (key.module.link_libc == true) self.is_linking_libc = true; if (key.module.link_libcpp == true) self.is_linking_libcpp = true; } } // For this loop, don't chase dynamic libraries because their link // objects are already linked. var it = self.root_module.iterateDependencies(self, false); while (it.next()) |key| { const module = key.module; const compile = key.compile.?; // While walking transitive dependencies, if a given link object is // already included in a library, it should not redundantly be // placed on the linker line of the dependee. const my_responsibility = compile == self; const already_linked = !my_responsibility and compile.isDynamicLibrary(); // Inherit dependencies on darwin frameworks. if (!already_linked) { for (module.frameworks.keys(), module.frameworks.values()) |name, info| { try frameworks.put(b.allocator, name, info); } } // Inherit dependencies on system libraries and static libraries. for (module.link_objects.items) |link_object| { switch (link_object) { .static_path => |static_path| { if (my_responsibility) { try zig_args.append(static_path.getPath(b)); total_linker_objects += 1; } }, .system_lib => |system_lib| { if ((try seen_system_libs.fetchPut(b.allocator, system_lib.name, {})) != null) continue; if (already_linked) continue; if ((system_lib.search_strategy != prev_search_strategy or system_lib.preferred_link_mode != prev_preferred_link_mode) and self.linkage != .static) { switch (system_lib.search_strategy) { .no_fallback => switch (system_lib.preferred_link_mode) { .Dynamic => try zig_args.append("-search_dylibs_only"), .Static => try zig_args.append("-search_static_only"), }, .paths_first => switch (system_lib.preferred_link_mode) { .Dynamic => try zig_args.append("-search_paths_first"), .Static => try zig_args.append("-search_paths_first_static"), }, .mode_first => switch (system_lib.preferred_link_mode) { .Dynamic => try zig_args.append("-search_dylibs_first"), .Static => try zig_args.append("-search_static_first"), }, } prev_search_strategy = system_lib.search_strategy; prev_preferred_link_mode = system_lib.preferred_link_mode; } const prefix: []const u8 = prefix: { if (system_lib.needed) break :prefix "-needed-l"; if (system_lib.weak) break :prefix "-weak-l"; break :prefix "-l"; }; switch (system_lib.use_pkg_config) { .no => try zig_args.append(b.fmt("{s}{s}", .{ prefix, system_lib.name })), .yes, .force => { if (self.runPkgConfig(system_lib.name)) |args| { try zig_args.appendSlice(args); } else |err| switch (err) { error.PkgConfigInvalidOutput, error.PkgConfigCrashed, error.PkgConfigFailed, error.PkgConfigNotInstalled, error.PackageNotFound, => switch (system_lib.use_pkg_config) { .yes => { // pkg-config failed, so fall back to linking the library // by name directly. try zig_args.append(b.fmt("{s}{s}", .{ prefix, system_lib.name, })); }, .force => { panic("pkg-config failed for library {s}", .{system_lib.name}); }, .no => unreachable, }, else => |e| return e, } }, } }, .other_step => |other| { switch (other.kind) { .exe => return step.fail("cannot link with an executable build artifact", .{}), .@"test" => return step.fail("cannot link with a test", .{}), .obj => { const included_in_lib = !my_responsibility and compile.kind == .lib and other.kind == .obj; if (!already_linked and !included_in_lib) { try zig_args.append(other.getEmittedBin().getPath(b)); total_linker_objects += 1; } }, .lib => l: { const other_produces_implib = other.producesImplib(); const other_is_static = other_produces_implib or other.isStaticLibrary(); if (self.isStaticLibrary() and other_is_static) { // Avoid putting a static library inside a static library. break :l; } // For DLLs, we must link against the implib. // For everything else, we directly link // against the library file. const full_path_lib = if (other_produces_implib) other.getGeneratedFilePath("generated_implib", &self.step) else other.getGeneratedFilePath("generated_bin", &self.step); try zig_args.append(full_path_lib); total_linker_objects += 1; if (other.linkage == Linkage.dynamic and self.rootModuleTarget().os.tag != .windows) { if (fs.path.dirname(full_path_lib)) |dirname| { try zig_args.append("-rpath"); try zig_args.append(dirname); } } }, } }, .assembly_file => |asm_file| l: { if (!my_responsibility) break :l; if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } try zig_args.append(asm_file.getPath(b)); total_linker_objects += 1; }, .c_source_file => |c_source_file| l: { if (!my_responsibility) break :l; if (c_source_file.flags.len == 0) { if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } } else { try zig_args.append("-cflags"); for (c_source_file.flags) |arg| { try zig_args.append(arg); } try zig_args.append("--"); prev_has_cflags = true; } try zig_args.append(c_source_file.file.getPath(b)); total_linker_objects += 1; }, .c_source_files => |c_source_files| l: { if (!my_responsibility) break :l; if (c_source_files.flags.len == 0) { if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } } else { try zig_args.append("-cflags"); for (c_source_files.flags) |flag| { try zig_args.append(flag); } try zig_args.append("--"); prev_has_cflags = true; } if (c_source_files.dependency) |dep| { for (c_source_files.files) |file| { try zig_args.append(dep.builder.pathFromRoot(file)); } } else { for (c_source_files.files) |file| { try zig_args.append(b.pathFromRoot(file)); } } total_linker_objects += c_source_files.files.len; }, .win32_resource_file => |rc_source_file| l: { if (!my_responsibility) break :l; if (rc_source_file.flags.len == 0) { if (prev_has_rcflags) { try zig_args.append("-rcflags"); try zig_args.append("--"); prev_has_rcflags = false; } } else { try zig_args.append("-rcflags"); for (rc_source_file.flags) |arg| { try zig_args.append(arg); } try zig_args.append("--"); prev_has_rcflags = true; } try zig_args.append(rc_source_file.file.getPath(b)); total_linker_objects += 1; }, } } } if (total_linker_objects == 0) { return step.fail("the linker needs one or more objects to link", .{}); } for (frameworks.keys(), frameworks.values()) |name, info| { if (info.needed) { try zig_args.append("-needed_framework"); } else if (info.weak) { try zig_args.append("-weak_framework"); } else { try zig_args.append("-framework"); } try zig_args.append(name); } if (self.is_linking_libcpp) { try zig_args.append("-lc++"); } if (self.is_linking_libc) { try zig_args.append("-lc"); } } if (self.win32_manifest) |manifest_file| { try zig_args.append(manifest_file.getPath(b)); } if (self.image_base) |image_base| { try zig_args.append("--image-base"); try zig_args.append(b.fmt("0x{x}", .{image_base})); } if (self.filter) |filter| { try zig_args.append("--test-filter"); try zig_args.append(filter); } if (self.test_evented_io) { try zig_args.append("--test-evented-io"); } if (self.test_runner) |test_runner| { try zig_args.append("--test-runner"); try zig_args.append(b.pathFromRoot(test_runner)); } for (b.debug_log_scopes) |log_scope| { try zig_args.append("--debug-log"); try zig_args.append(log_scope); } if (b.debug_compile_errors) { try zig_args.append("--debug-compile-errors"); } if (b.verbose_cimport) try zig_args.append("--verbose-cimport"); if (b.verbose_air) try zig_args.append("--verbose-air"); if (b.verbose_llvm_ir) |path| try zig_args.append(b.fmt("--verbose-llvm-ir={s}", .{path})); if (b.verbose_llvm_bc) |path| try zig_args.append(b.fmt("--verbose-llvm-bc={s}", .{path})); if (b.verbose_link or self.verbose_link) try zig_args.append("--verbose-link"); if (b.verbose_cc or self.verbose_cc) try zig_args.append("--verbose-cc"); if (b.verbose_llvm_cpu_features) try zig_args.append("--verbose-llvm-cpu-features"); if (self.generated_asm != null) try zig_args.append("-femit-asm"); if (self.generated_bin == null) try zig_args.append("-fno-emit-bin"); if (self.generated_docs != null) try zig_args.append("-femit-docs"); if (self.generated_implib != null) try zig_args.append("-femit-implib"); if (self.generated_llvm_bc != null) try zig_args.append("-femit-llvm-bc"); if (self.generated_llvm_ir != null) try zig_args.append("-femit-llvm-ir"); if (self.generated_h != null) try zig_args.append("-femit-h"); switch (self.compress_debug_sections) { .none => {}, .zlib => try zig_args.append("--compress-debug-sections=zlib"), .zstd => try zig_args.append("--compress-debug-sections=zstd"), } if (self.link_eh_frame_hdr) { try zig_args.append("--eh-frame-hdr"); } if (self.link_emit_relocs) { try zig_args.append("--emit-relocs"); } if (self.link_function_sections) { try zig_args.append("-ffunction-sections"); } if (self.link_data_sections) { try zig_args.append("-fdata-sections"); } if (self.link_gc_sections) |x| { try zig_args.append(if (x) "--gc-sections" else "--no-gc-sections"); } if (!self.linker_dynamicbase) { try zig_args.append("--no-dynamicbase"); } if (self.linker_allow_shlib_undefined) |x| { try zig_args.append(if (x) "-fallow-shlib-undefined" else "-fno-allow-shlib-undefined"); } if (self.link_z_notext) { try zig_args.append("-z"); try zig_args.append("notext"); } if (!self.link_z_relro) { try zig_args.append("-z"); try zig_args.append("norelro"); } if (self.link_z_lazy) { try zig_args.append("-z"); try zig_args.append("lazy"); } if (self.link_z_common_page_size) |size| { try zig_args.append("-z"); try zig_args.append(b.fmt("common-page-size={d}", .{size})); } if (self.link_z_max_page_size) |size| { try zig_args.append("-z"); try zig_args.append(b.fmt("max-page-size={d}", .{size})); } if (self.libc_file) |libc_file| { try zig_args.append("--libc"); try zig_args.append(libc_file.getPath(b)); } else if (b.libc_file) |libc_file| { try zig_args.append("--libc"); try zig_args.append(libc_file); } try zig_args.append("--cache-dir"); try zig_args.append(b.cache_root.path orelse "."); try zig_args.append("--global-cache-dir"); try zig_args.append(b.global_cache_root.path orelse "."); try zig_args.append("--name"); try zig_args.append(self.name); if (self.linkage) |some| switch (some) { .dynamic => try zig_args.append("-dynamic"), .static => try zig_args.append("-static"), }; if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic) { if (self.version) |version| { try zig_args.append("--version"); try zig_args.append(b.fmt("{}", .{version})); } if (self.rootModuleTarget().isDarwin()) { const install_name = self.install_name orelse b.fmt("@rpath/{s}{s}{s}", .{ self.rootModuleTarget().libPrefix(), self.name, self.rootModuleTarget().dynamicLibSuffix(), }); try zig_args.append("-install_name"); try zig_args.append(install_name); } } if (self.entitlements) |entitlements| { try zig_args.appendSlice(&[_][]const u8{ "--entitlements", entitlements }); } if (self.pagezero_size) |pagezero_size| { const size = try std.fmt.allocPrint(b.allocator, "{x}", .{pagezero_size}); try zig_args.appendSlice(&[_][]const u8{ "-pagezero_size", size }); } if (self.headerpad_size) |headerpad_size| { const size = try std.fmt.allocPrint(b.allocator, "{x}", .{headerpad_size}); try zig_args.appendSlice(&[_][]const u8{ "-headerpad", size }); } if (self.headerpad_max_install_names) { try zig_args.append("-headerpad_max_install_names"); } if (self.dead_strip_dylibs) { try zig_args.append("-dead_strip_dylibs"); } try addFlag(&zig_args, "compiler-rt", self.bundle_compiler_rt); try addFlag(&zig_args, "dll-export-fns", self.dll_export_fns); if (self.rdynamic) { try zig_args.append("-rdynamic"); } if (self.import_memory) { try zig_args.append("--import-memory"); } if (self.export_memory) { try zig_args.append("--export-memory"); } if (self.import_symbols) { try zig_args.append("--import-symbols"); } if (self.import_table) { try zig_args.append("--import-table"); } if (self.export_table) { try zig_args.append("--export-table"); } if (self.initial_memory) |initial_memory| { try zig_args.append(b.fmt("--initial-memory={d}", .{initial_memory})); } if (self.max_memory) |max_memory| { try zig_args.append(b.fmt("--max-memory={d}", .{max_memory})); } if (self.shared_memory) { try zig_args.append("--shared-memory"); } if (self.global_base) |global_base| { try zig_args.append(b.fmt("--global-base={d}", .{global_base})); } if (self.wasi_exec_model) |model| { try zig_args.append(b.fmt("-mexec-model={s}", .{@tagName(model)})); } if (self.linker_script) |linker_script| { try zig_args.append("--script"); try zig_args.append(linker_script.getPath(b)); } if (self.version_script) |version_script| { try zig_args.append("--version-script"); try zig_args.append(b.pathFromRoot(version_script)); } if (self.kind == .@"test") { if (self.exec_cmd_args) |exec_cmd_args| { for (exec_cmd_args) |cmd_arg| { if (cmd_arg) |arg| { try zig_args.append("--test-cmd"); try zig_args.append(arg); } else { try zig_args.append("--test-cmd-bin"); } } } } try self.appendModuleArgs(&zig_args); if (b.sysroot) |sysroot| { try zig_args.appendSlice(&[_][]const u8{ "--sysroot", sysroot }); } for (b.search_prefixes.items) |search_prefix| { var prefix_dir = fs.cwd().openDir(search_prefix, .{}) catch |err| { return step.fail("unable to open prefix directory '{s}': {s}", .{ search_prefix, @errorName(err), }); }; defer prefix_dir.close(); // Avoid passing -L and -I flags for nonexistent directories. // This prevents a warning, that should probably be upgraded to an error in Zig's // CLI parsing code, when the linker sees an -L directory that does not exist. if (prefix_dir.accessZ("lib", .{})) |_| { try zig_args.appendSlice(&.{ "-L", try fs.path.join(b.allocator, &.{ search_prefix, "lib" }), }); } else |err| switch (err) { error.FileNotFound => {}, else => |e| return step.fail("unable to access '{s}/lib' directory: {s}", .{ search_prefix, @errorName(e), }), } if (prefix_dir.accessZ("include", .{})) |_| { try zig_args.appendSlice(&.{ "-I", try fs.path.join(b.allocator, &.{ search_prefix, "include" }), }); } else |err| switch (err) { error.FileNotFound => {}, else => |e| return step.fail("unable to access '{s}/include' directory: {s}", .{ search_prefix, @errorName(e), }), } } if (self.rc_includes != .any) { try zig_args.append("-rcincludes"); try zig_args.append(@tagName(self.rc_includes)); } try addFlag(&zig_args, "each-lib-rpath", self.each_lib_rpath); if (self.build_id) |build_id| { try zig_args.append(switch (build_id) { .hexstring => |hs| b.fmt("--build-id=0x{s}", .{ std.fmt.fmtSliceHexLower(hs.toSlice()), }), .none, .fast, .uuid, .sha1, .md5 => b.fmt("--build-id={s}", .{@tagName(build_id)}), }); } if (self.zig_lib_dir) |dir| { try zig_args.append("--zig-lib-dir"); try zig_args.append(dir.getPath(b)); } try addFlag(&zig_args, "PIE", self.pie); try addFlag(&zig_args, "lto", self.want_lto); if (self.subsystem) |subsystem| { try zig_args.append("--subsystem"); try zig_args.append(switch (subsystem) { .Console => "console", .Windows => "windows", .Posix => "posix", .Native => "native", .EfiApplication => "efi_application", .EfiBootServiceDriver => "efi_boot_service_driver", .EfiRom => "efi_rom", .EfiRuntimeDriver => "efi_runtime_driver", }); } if (self.error_limit) |err_limit| try zig_args.appendSlice(&.{ "--error-limit", b.fmt("{}", .{err_limit}), }); try zig_args.append("--listen=-"); // Windows has an argument length limit of 32,766 characters, macOS 262,144 and Linux // 2,097,152. If our args exceed 30 KiB, we instead write them to a "response file" and // pass that to zig, e.g. via 'zig build-lib @args.rsp' // See @file syntax here: https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html var args_length: usize = 0; for (zig_args.items) |arg| { args_length += arg.len + 1; // +1 to account for null terminator } if (args_length >= 30 * 1024) { try b.cache_root.handle.makePath("args"); const args_to_escape = zig_args.items[2..]; var escaped_args = try ArrayList([]const u8).initCapacity(b.allocator, args_to_escape.len); arg_blk: for (args_to_escape) |arg| { for (arg, 0..) |c, arg_idx| { if (c == '\\' or c == '"') { // Slow path for arguments that need to be escaped. We'll need to allocate and copy var escaped = try ArrayList(u8).initCapacity(b.allocator, arg.len + 1); const writer = escaped.writer(); try writer.writeAll(arg[0..arg_idx]); for (arg[arg_idx..]) |to_escape| { if (to_escape == '\\' or to_escape == '"') try writer.writeByte('\\'); try writer.writeByte(to_escape); } escaped_args.appendAssumeCapacity(escaped.items); continue :arg_blk; } } escaped_args.appendAssumeCapacity(arg); // no escaping needed so just use original argument } // Write the args to zig-cache/args/ to avoid conflicts with // other zig build commands running in parallel. const partially_quoted = try std.mem.join(b.allocator, "\" \"", escaped_args.items); const args = try std.mem.concat(b.allocator, u8, &[_][]const u8{ "\"", partially_quoted, "\"" }); var args_hash: [Sha256.digest_length]u8 = undefined; Sha256.hash(args, &args_hash, .{}); var args_hex_hash: [Sha256.digest_length * 2]u8 = undefined; _ = try std.fmt.bufPrint( &args_hex_hash, "{s}", .{std.fmt.fmtSliceHexLower(&args_hash)}, ); const args_file = "args" ++ fs.path.sep_str ++ args_hex_hash; try b.cache_root.handle.writeFile(args_file, args); const resolved_args_file = try mem.concat(b.allocator, u8, &.{ "@", try b.cache_root.join(b.allocator, &.{args_file}), }); zig_args.shrinkRetainingCapacity(2); try zig_args.append(resolved_args_file); } const maybe_output_bin_path = step.evalZigProcess(zig_args.items, prog_node) catch |err| switch (err) { error.NeedCompileErrorCheck => { assert(self.expect_errors != null); try checkCompileErrors(self); return; }, else => |e| return e, }; // Update generated files if (maybe_output_bin_path) |output_bin_path| { const output_dir = fs.path.dirname(output_bin_path).?; if (self.emit_directory) |lp| { lp.path = output_dir; } // -femit-bin[=path] (default) Output machine code if (self.generated_bin) |bin| { bin.path = b.pathJoin(&.{ output_dir, self.out_filename }); } const sep = std.fs.path.sep; // output PDB if someone requested it if (self.generated_pdb) |pdb| { pdb.path = b.fmt("{s}{c}{s}.pdb", .{ output_dir, sep, self.name }); } // -femit-implib[=path] (default) Produce an import .lib when building a Windows DLL if (self.generated_implib) |implib| { implib.path = b.fmt("{s}{c}{s}.lib", .{ output_dir, sep, self.name }); } // -femit-h[=path] Generate a C header file (.h) if (self.generated_h) |lp| { lp.path = b.fmt("{s}{c}{s}.h", .{ output_dir, sep, self.name }); } // -femit-docs[=path] Create a docs/ dir with html documentation if (self.generated_docs) |generated_docs| { generated_docs.path = b.pathJoin(&.{ output_dir, "docs" }); } // -femit-asm[=path] Output .s (assembly code) if (self.generated_asm) |lp| { lp.path = b.fmt("{s}{c}{s}.s", .{ output_dir, sep, self.name }); } // -femit-llvm-ir[=path] Produce a .ll file with optimized LLVM IR (requires LLVM extensions) if (self.generated_llvm_ir) |lp| { lp.path = b.fmt("{s}{c}{s}.ll", .{ output_dir, sep, self.name }); } // -femit-llvm-bc[=path] Produce an optimized LLVM module as a .bc file (requires LLVM extensions) if (self.generated_llvm_bc) |lp| { lp.path = b.fmt("{s}{c}{s}.bc", .{ output_dir, sep, self.name }); } } if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic and self.version != null and std.Build.wantSharedLibSymLinks(self.rootModuleTarget())) { try doAtomicSymLinks( step, self.getEmittedBin().getPath(b), self.major_only_filename.?, self.name_only_filename.?, ); } } pub fn doAtomicSymLinks( step: *Step, output_path: []const u8, filename_major_only: []const u8, filename_name_only: []const u8, ) !void { const arena = step.owner.allocator; const out_dir = fs.path.dirname(output_path) orelse "."; const out_basename = fs.path.basename(output_path); // sym link for libfoo.so.1 to libfoo.so.1.2.3 const major_only_path = try fs.path.join(arena, &.{ out_dir, filename_major_only }); fs.atomicSymLink(arena, out_basename, major_only_path) catch |err| { return step.fail("unable to symlink {s} -> {s}: {s}", .{ major_only_path, out_basename, @errorName(err), }); }; // sym link for libfoo.so to libfoo.so.1 const name_only_path = try fs.path.join(arena, &.{ out_dir, filename_name_only }); fs.atomicSymLink(arena, filename_major_only, name_only_path) catch |err| { return step.fail("Unable to symlink {s} -> {s}: {s}", .{ name_only_path, filename_major_only, @errorName(err), }); }; } fn execPkgConfigList(self: *std.Build, out_code: *u8) (PkgConfigError || RunError)![]const PkgConfigPkg { const stdout = try self.runAllowFail(&[_][]const u8{ "pkg-config", "--list-all" }, out_code, .Ignore); var list = ArrayList(PkgConfigPkg).init(self.allocator); errdefer list.deinit(); var line_it = mem.tokenizeAny(u8, stdout, "\r\n"); while (line_it.next()) |line| { if (mem.trim(u8, line, " \t").len == 0) continue; var tok_it = mem.tokenizeAny(u8, line, " \t"); try list.append(PkgConfigPkg{ .name = tok_it.next() orelse return error.PkgConfigInvalidOutput, .desc = tok_it.rest(), }); } return list.toOwnedSlice(); } fn getPkgConfigList(self: *std.Build) ![]const PkgConfigPkg { if (self.pkg_config_pkg_list) |res| { return res; } var code: u8 = undefined; if (execPkgConfigList(self, &code)) |list| { self.pkg_config_pkg_list = list; return list; } else |err| { const result = switch (err) { error.ProcessTerminated => error.PkgConfigCrashed, error.ExecNotSupported => error.PkgConfigFailed, error.ExitCodeFailure => error.PkgConfigFailed, error.FileNotFound => error.PkgConfigNotInstalled, error.InvalidName => error.PkgConfigNotInstalled, error.PkgConfigInvalidOutput => error.PkgConfigInvalidOutput, else => return err, }; self.pkg_config_pkg_list = result; return result; } } fn addFlag(args: *ArrayList([]const u8), comptime name: []const u8, opt: ?bool) !void { const cond = opt orelse return; try args.ensureUnusedCapacity(1); if (cond) { args.appendAssumeCapacity("-f" ++ name); } else { args.appendAssumeCapacity("-fno-" ++ name); } } fn checkCompileErrors(self: *Compile) !void { // Clear this field so that it does not get printed by the build runner. const actual_eb = self.step.result_error_bundle; self.step.result_error_bundle = std.zig.ErrorBundle.empty; const arena = self.step.owner.allocator; var actual_stderr_list = std.ArrayList(u8).init(arena); try actual_eb.renderToWriter(.{ .ttyconf = .no_color, .include_reference_trace = false, .include_source_line = false, }, actual_stderr_list.writer()); const actual_stderr = try actual_stderr_list.toOwnedSlice(); // Render the expected lines into a string that we can compare verbatim. var expected_generated = std.ArrayList(u8).init(arena); const expect_errors = self.expect_errors.?; var actual_line_it = mem.splitScalar(u8, actual_stderr, '\n'); // TODO merge this with the testing.expectEqualStrings logic, and also CheckFile switch (expect_errors) { .contains => |expect_line| { while (actual_line_it.next()) |actual_line| { if (!matchCompileError(actual_line, expect_line)) continue; return; } return self.step.fail( \\ \\========= should contain: =============== \\{s} \\========= but not found: ================ \\{s} \\========================================= , .{ expect_line, actual_stderr }); }, .exact => |expect_lines| { for (expect_lines) |expect_line| { const actual_line = actual_line_it.next() orelse { try expected_generated.appendSlice(expect_line); try expected_generated.append('\n'); continue; }; if (matchCompileError(actual_line, expect_line)) { try expected_generated.appendSlice(actual_line); try expected_generated.append('\n'); continue; } try expected_generated.appendSlice(expect_line); try expected_generated.append('\n'); } if (mem.eql(u8, expected_generated.items, actual_stderr)) return; return self.step.fail( \\ \\========= expected: ===================== \\{s} \\========= but found: ==================== \\{s} \\========================================= , .{ expected_generated.items, actual_stderr }); }, } } fn matchCompileError(actual: []const u8, expected: []const u8) bool { if (mem.endsWith(u8, actual, expected)) return true; if (mem.startsWith(u8, expected, ":?:?: ")) { if (mem.endsWith(u8, actual, expected[":?:?: ".len..])) return true; } // We scan for /?/ in expected line and if there is a match, we match everything // up to and after /?/. const expected_trim = mem.trim(u8, expected, " "); if (mem.indexOf(u8, expected_trim, "/?/")) |index| { const actual_trim = mem.trim(u8, actual, " "); const lhs = expected_trim[0..index]; const rhs = expected_trim[index + "/?/".len ..]; if (mem.startsWith(u8, actual_trim, lhs) and mem.endsWith(u8, actual_trim, rhs)) return true; } return false; } pub fn rootModuleTarget(c: *Compile) std.Target { // The root module is always given a target, so we know this to be non-null. return c.root_module.target.?.target; }