Rename all references of sparcv9 to sparc64, to make Zig align more with
other projects. Also, added new function to convert glibc arch name to Zig
arch name, since it refers to the architecture as sparcv9.
This is based on the suggestion by @kubkon in PR 11847.
(https://github.com/ziglang/zig/pull/11487#pullrequestreview-963761757)
the list parameter should be a multi-item pointer rather than a single-item
pointer. see: https://linux.die.net/man/2/setgroups
> setgroups() sets the supplementary group IDs for the calling process...
> the size argument specifies the number of supplementary group IDs in the buffer pointed to by list.
- Test: Fix bucket counting. Previously, the first hit was not counted.
This off-by-one error slightly increased the mean of `*_total_variance`,
which decreased the acceptance rate for a particular random seed
from 95% to 92.6%. (Irrelevant for test failure because the seed is fixed.)
- Improve comments
EnvMap provides the same API as the previously used BufMap (besides `putMove` and `getPtr`), so usage sites of `getEnvMap` can usually remain unchanged.
For non-Windows, EnvMap is a wrapper around BufMap. On Windows, it uses a new EnvMapWindows to handle some Windows-specific behavior:
- Lookups use Unicode-aware case insensitivity (but `get` cannot return an error because EnvMapWindows has an internal buffer to use for lookup conversions)
- Canonical names are returned when iterating the EnvMap
Fixes#10561, closes#4603
* Rename std.builtin.GlobalVisibility to std.builtin.SymbolVisibility
* Add missing compile error. From the LLVM language reference: "A
symbol with internal or private linkage must have default
visibility."
stage2: change logic for detecting whether the main package is inside
the std package. Previously it relied on realpath() which is not portable.
This uses resolve() which is how imports already work.
* stage2: fix cleanup bug when creating Module
* flatten lib/std/special/* to lib/*
- this was motivated by making main_pkg_is_inside_std false for
compiler_rt & friends.
* rename "mini libc" to "universal libc"
This improves the ABI alignment resolution code.
This commit fully enables the MachO linker code in stage3. Note,
however, that there are still miscompilations in stage3.
We can't yet run the behavior tests with stage3, but at least we can run
them with stage2, and we can use the proper test matrix.
This commit also adds use_llvm and ofmt to the zig build system.
These targets now have a similar disagreement with LLVM about the
alignment of 128-bit integers as x86_64:
* riscv64
* powerpc64
* powerpc64le
* mips64
* mips64el
* sparcv9
See #2987
For x86_64, LLVMABIAlignmentOfType(i128) reports 8. However I think 16
is a better number for two reasons:
1. Better machine code when loading into SIMD register.
2. The C ABI wants 16 for extern structs.
Prior to this commit, the logic for ABI size and ABI alignment for
integers was naive and incorrect. This results in wasted hardware as
well as undefined behavior in the LLVM backend when we memset an
incorrect number of bytes to 0xaa due to disagreeing with LLVM about the
ABI size of integers.
This commit introduces a "max int align" value which is different per
Target. This value is used to derive the ABI size and alignment of all
integers.
This commit makes an interesting change from stage1, which treats
128-bit integers as 16-bytes aligned for x86_64-linux. stage1 is
incorrect. The maximum integer alignment on this system is only 8 bytes.
This change breaks the behavior test called "128-bit cmpxchg" because on
that target, 128-bit cmpxchg does require a 16-bytes aligned pointer to
a 128 bit integer. However, this alignment property does not belong on
*all* 128 bit integers - only on the pointer type in the `@cmpxchg`
builtin function prototype. The user can then use an alignment override
annotation on a 128-bit integer variable or struct field to obtain such
a pointer.
Adding `unreachable` prevents the futex code from being inspected during
a single-threaded build. Without futex, first draft BYOS packages don't
need to implement `nanosleep` to get a single-threaded "hello world"
program working.
Use of `assert()` did not achieve the desired effect of avoiding futex
in a single-threaded build.