std.rand: fixup 'improve random float generation'

- Test: Fix bucket counting. Previously, the first hit was not counted.
  This off-by-one error slightly increased the mean of `*_total_variance`,
  which decreased the acceptance rate for a particular random seed
  from 95% to 92.6%. (Irrelevant for test failure because the seed is fixed.)
- Improve comments
This commit is contained in:
Erik Arvstedt 2022-05-12 14:13:20 +02:00
parent 7bedeb9659
commit 1d5ea10bee
2 changed files with 8 additions and 6 deletions

View File

@ -247,10 +247,9 @@ pub const Random = struct {
/// Return a floating point value evenly distributed in the range [0, 1).
pub fn float(r: Random, comptime T: type) T {
// Generate a uniformly random value between for the mantissa.
// Generate a uniformly random value for the mantissa.
// Then generate an exponentially biased random value for the exponent.
// Over the previous method, this has the advantage of being able to
// represent every possible value in the available range.
// This covers every possible value in the range.
switch (T) {
f32 => {
// Use 23 random bits for the mantissa, and the rest for the exponent.
@ -259,6 +258,9 @@ pub const Random = struct {
const rand = r.int(u64);
var rand_lz = @clz(u64, rand | 0x7FFFFF);
if (rand_lz == 41) {
// TODO: when #5177 or #489 is implemented,
// tell the compiler it is unlikely (1/2^41) to reach this point.
// (Same for the if branch and the f64 calculations below.)
rand_lz += @clz(u64, r.int(u64));
if (rand_lz == 41 + 64) {
// It is astronomically unlikely to reach this point.

View File

@ -336,13 +336,13 @@ test "Random float chi-square goodness of fit" {
if (f32_put.found_existing) {
f32_put.value_ptr.* += 1;
} else {
f32_put.value_ptr.* = 0;
f32_put.value_ptr.* = 1;
}
var f64_put = try f64_hist.getOrPut(@floatToInt(u32, rand_f64 * @intToFloat(f64, num_buckets)));
if (f64_put.found_existing) {
f64_put.value_ptr.* += 1;
} else {
f64_put.value_ptr.* = 0;
f64_put.value_ptr.* = 1;
}
}
@ -371,7 +371,7 @@ test "Random float chi-square goodness of fit" {
}
}
// Corresponds to a p-value > 0.05.
// Accept p-values >= 0.05.
// Critical value is calculated by opening a Python interpreter and running:
// scipy.stats.chi2.isf(0.05, num_buckets - 1)
const critical_value = 1073.6426506574246;