mirror of
https://github.com/ziglang/zig.git
synced 2026-01-20 14:25:16 +00:00
std: improve random float generation
This commit is contained in:
parent
e0a514df41
commit
550888e2ac
128
lib/std/rand.zig
128
lib/std/rand.zig
@ -16,6 +16,8 @@ const math = std.math;
|
||||
const ziggurat = @import("rand/ziggurat.zig");
|
||||
const maxInt = std.math.maxInt;
|
||||
|
||||
const Dilbert = @import("rand/Dilbert.zig");
|
||||
|
||||
/// Fast unbiased random numbers.
|
||||
pub const DefaultPrng = Xoshiro256;
|
||||
|
||||
@ -249,18 +251,51 @@ pub const Random = struct {
|
||||
|
||||
/// Return a floating point value evenly distributed in the range [0, 1).
|
||||
pub fn float(r: Random, comptime T: type) T {
|
||||
// Generate a uniform value between [1, 2) and scale down to [0, 1).
|
||||
// Note: The lowest mantissa bit is always set to 0 so we only use half the available range.
|
||||
// Generate a uniformly random value between for the mantissa.
|
||||
// Then generate an exponentially biased random value for the exponent.
|
||||
// Over the previous method, this has the advantage of being able to
|
||||
// represent every possible value in the available range.
|
||||
switch (T) {
|
||||
f32 => {
|
||||
const s = r.int(u32);
|
||||
const repr = (0x7f << 23) | (s >> 9);
|
||||
return @bitCast(f32, repr) - 1.0;
|
||||
// Use 23 random bits for the mantissa, and the rest for the exponent.
|
||||
// If all 41 bits are zero, generate additional random bits, until a
|
||||
// set bit is found, or 126 bits have been generated.
|
||||
const rand = r.int(u64);
|
||||
var rand_lz = @clz(u64, rand | 0x7FFFFF);
|
||||
if (rand_lz == 41) {
|
||||
rand_lz += @clz(u64, r.int(u64));
|
||||
if (rand_lz == 41 + 64) {
|
||||
// It is astronomically unlikely to reach this point.
|
||||
rand_lz += @clz(u32, r.int(u32) | 0x7FF);
|
||||
}
|
||||
}
|
||||
const mantissa = @truncate(u23, rand);
|
||||
const exponent = @as(u32, 126 - rand_lz) << 23;
|
||||
return @bitCast(f32, exponent | mantissa);
|
||||
},
|
||||
f64 => {
|
||||
const s = r.int(u64);
|
||||
const repr = (0x3ff << 52) | (s >> 12);
|
||||
return @bitCast(f64, repr) - 1.0;
|
||||
// Use 52 random bits for the mantissa, and the rest for the exponent.
|
||||
// If all 12 bits are zero, generate additional random bits, until a
|
||||
// set bit is found, or 1022 bits have been generated.
|
||||
const rand = r.int(u64);
|
||||
var rand_lz: u64 = @clz(u64, rand | 0xFFFFFFFFFFFFF);
|
||||
if (rand_lz == 12) {
|
||||
while (true) {
|
||||
// It is astronomically unlikely for this loop to execute more than once.
|
||||
const addl_rand_lz = @clz(u64, r.int(u64));
|
||||
rand_lz += addl_rand_lz;
|
||||
if (addl_rand_lz != 64) {
|
||||
break;
|
||||
}
|
||||
if (rand_lz >= 1022) {
|
||||
rand_lz = 1022;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
const mantissa = rand & 0xFFFFFFFFFFFFF;
|
||||
const exponent = (1022 - rand_lz) << 52;
|
||||
return @bitCast(f64, exponent | mantissa);
|
||||
},
|
||||
else => @compileError("unknown floating point type"),
|
||||
}
|
||||
@ -573,7 +608,7 @@ test "splitmix64 sequence" {
|
||||
}
|
||||
|
||||
// Actual Random helper function tests, pcg engine is assumed correct.
|
||||
test "Random float" {
|
||||
test "Random float correctness" {
|
||||
var prng = DefaultPrng.init(0);
|
||||
const random = prng.random();
|
||||
|
||||
@ -589,6 +624,81 @@ test "Random float" {
|
||||
}
|
||||
}
|
||||
|
||||
// Check the "astronomically unlikely" code paths.
|
||||
test "Random float coverage" {
|
||||
var prng = try Dilbert.init(&[_]u8{0});
|
||||
const random = prng.random();
|
||||
|
||||
const rand_f64 = random.float(f64);
|
||||
const rand_f32 = random.float(f32);
|
||||
|
||||
try expect(rand_f32 == 0.0);
|
||||
try expect(rand_f64 == 0.0);
|
||||
}
|
||||
|
||||
test "Random float chi-square goodness of fit" {
|
||||
const num_numbers = 100000;
|
||||
const num_buckets = 1000;
|
||||
|
||||
var f32_hist = std.AutoHashMap(u32, u32).init(std.testing.allocator);
|
||||
defer f32_hist.deinit();
|
||||
var f64_hist = std.AutoHashMap(u64, u32).init(std.testing.allocator);
|
||||
defer f64_hist.deinit();
|
||||
|
||||
var prng = DefaultPrng.init(0);
|
||||
const random = prng.random();
|
||||
|
||||
var i: usize = 0;
|
||||
while (i < num_numbers) : (i += 1) {
|
||||
const rand_f32 = random.float(f32);
|
||||
const rand_f64 = random.float(f64);
|
||||
var f32_put = try f32_hist.getOrPut(@floatToInt(u32, rand_f32 * @intToFloat(f32, num_buckets)));
|
||||
if (f32_put.found_existing) {
|
||||
f32_put.value_ptr.* += 1;
|
||||
} else {
|
||||
f32_put.value_ptr.* = 0;
|
||||
}
|
||||
var f64_put = try f64_hist.getOrPut(@floatToInt(u32, rand_f64 * @intToFloat(f64, num_buckets)));
|
||||
if (f64_put.found_existing) {
|
||||
f64_put.value_ptr.* += 1;
|
||||
} else {
|
||||
f64_put.value_ptr.* = 0;
|
||||
}
|
||||
}
|
||||
|
||||
var f32_total_variance: f64 = 0;
|
||||
var f64_total_variance: f64 = 0;
|
||||
|
||||
{
|
||||
var j: u32 = 0;
|
||||
while (j < num_buckets) : (j += 1) {
|
||||
const count = @intToFloat(f64, (if (f32_hist.get(j)) |v| v else 0));
|
||||
const expected = @intToFloat(f64, num_numbers) / @intToFloat(f64, num_buckets);
|
||||
const delta = count - expected;
|
||||
const variance = (delta * delta) / expected;
|
||||
f32_total_variance += variance;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
var j: u64 = 0;
|
||||
while (j < num_buckets) : (j += 1) {
|
||||
const count = @intToFloat(f64, (if (f64_hist.get(j)) |v| v else 0));
|
||||
const expected = @intToFloat(f64, num_numbers) / @intToFloat(f64, num_buckets);
|
||||
const delta = count - expected;
|
||||
const variance = (delta * delta) / expected;
|
||||
f64_total_variance += variance;
|
||||
}
|
||||
}
|
||||
|
||||
// Corresponds to a p-value > 0.05.
|
||||
// Critical value is calculated by opening a Python interpreter and running:
|
||||
// scipy.stats.chi2.isf(0.05, num_buckets - 1)
|
||||
const critical_value = 1073.6426506574246;
|
||||
try expect(f32_total_variance < critical_value);
|
||||
try expect(f64_total_variance < critical_value);
|
||||
}
|
||||
|
||||
test "Random shuffle" {
|
||||
var prng = DefaultPrng.init(0);
|
||||
const random = prng.random();
|
||||
|
||||
52
lib/std/rand/Dilbert.zig
Normal file
52
lib/std/rand/Dilbert.zig
Normal file
@ -0,0 +1,52 @@
|
||||
//! Dilbert PRNG
|
||||
//! Do not use this PRNG! It is meant to be predictable, for the purposes of test reproducibility and coverage.
|
||||
//! Its output is just a repeat of a user-specified byte pattern.
|
||||
//! Name is a reference to this comic: https://dilbert.com/strip/2001-10-25
|
||||
|
||||
const std = @import("std");
|
||||
const Random = std.rand.Random;
|
||||
const math = std.math;
|
||||
const Dilbert = @This();
|
||||
|
||||
pattern: []const u8 = undefined,
|
||||
curr_idx: usize = 0,
|
||||
|
||||
pub fn init(pattern: []const u8) !Dilbert {
|
||||
if (pattern.len == 0)
|
||||
return error.EmptyPattern;
|
||||
var self = Dilbert{};
|
||||
self.pattern = pattern;
|
||||
self.curr_idx = 0;
|
||||
return self;
|
||||
}
|
||||
|
||||
pub fn random(self: *Dilbert) Random {
|
||||
return Random.init(self, fill);
|
||||
}
|
||||
|
||||
pub fn fill(self: *Dilbert, buf: []u8) void {
|
||||
for (buf) |*byte| {
|
||||
byte.* = self.pattern[self.curr_idx];
|
||||
self.curr_idx = (self.curr_idx + 1) % self.pattern.len;
|
||||
}
|
||||
}
|
||||
|
||||
test "Dilbert fill" {
|
||||
var r = try Dilbert.init("9nine");
|
||||
|
||||
const seq = [_]u64{
|
||||
0x396E696E65396E69,
|
||||
0x6E65396E696E6539,
|
||||
0x6E696E65396E696E,
|
||||
0x65396E696E65396E,
|
||||
0x696E65396E696E65,
|
||||
};
|
||||
|
||||
for (seq) |s| {
|
||||
var buf0: [8]u8 = undefined;
|
||||
var buf1: [8]u8 = undefined;
|
||||
std.mem.writeIntBig(u64, &buf0, s);
|
||||
r.fill(&buf1);
|
||||
try std.testing.expect(std.mem.eql(u8, buf0[0..], buf1[0..]));
|
||||
}
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user