It is possible to get comptime-known values from runtime-known values
for example the length of array. Allowing runtime only instructions to
be emitted outside function bodies allows these operations to happen.
In places where comptime-known values are required we have other methods
to ensure that and they usually result in more specific compile errors too.
Closes#12240
Windows gives AccessDenied if you delete a directory which contains open
file handles. This could be triggered when using CacheMode.whole when
cross compiling macho test binaries.
build.zig: add a 'compile' step to compile the self-hosted compiler
without installing it.
Compilation: set cache mode to whole when using the LLVM backend and
--enable-cache is passed.
This makes `zig build` act the same as it does with stage1. Upside is
that a second invocation of `zig build` on an unmodified source tree
will avoid redoing the compilation again. Downside is that it will
proliferate more garbage in the project-local cache (same as stage1).
This can eventually be fixed when Zig's incremental compilation is more
robust; we can go back to having LLVM use CacheMode.incremental and rely
on it detecting no changes and avoiding doing the flush() step.
enums so that we can branch to set `link_mode` properly when we iterate
over the clang arguments. also replaced `dynamic` flag in
clang_options_data.zig with proper definition similarly to `static`."
This reverts commit 6af0eeb58d1d220d407ce4c463eaeb25b35f2761.
This change needs more careful consideration. It regressed
zig-bootstrap due to cmake passing `-static -lkernel32` and zig failing
with error.UnableToStaticLink.
See https://github.com/ziglang/zig-bootstrap/issues/134
I did not fully wire it up in main.zig when I originally implemented
`-z nocopyreloc` in #11679 (440f5249f1a). Finish it.
If we strictly follow the rules, we should bump the cache has version,
since the field was technically added only now. But since nobody
complained thus far, I don't think many users care that much about it
and we can omit it.
* Sema: implement linksection on functions
* Implement function linksection in Sema.
* Don't clobber function linksection/align/addrspace in Sema.
* Fix copy-paste typo in tests.
* Add a bunch of missing test_step.dependOn.
* Fix checkInSymtab match.
Closes#12546
It is not yet determined whether the Zig language will land on
text-based string concatenation for inline assembly, as Zig 0.9.1
allows, and as this commit allows, or whether it will introduce a new
assembly syntax more integrated with the rest of the language. Until
this decision is made, this commit relaxes the restriction which was
preventing inline assembly expressions from using comptime expressions
for the assembly source code.
'Self' isn't a very good name to describe what it does.
This commit changes the type name into `CodeGen` and the parameter
to `func` as we're generating code for a function.
With this change, the backend's coding style is in line with the
self-hosted Wasm-linker.
When we return an operand directly as a result, we must call
`reuseOperand`. This commit ensures it's done for all currently-
implemented AIR instructions.
Rather than accepting a canonical branch and a target branch
we allow to directly merge a branch into the parent branch.
This is possible as there's no overlapping and we have infinite
registers to our availability. This makes merging a lot simpler.
When determining the type of a local (read: register), we would
previously subtract the stack locals also. However, this locals
are also within the same `locals` list, meaning the type of the
local we were retrieving was off by 2. This could create a validation
error when we re-use a local of a different type.
Upon a branch, we only allow locals to be freed which were allocated
within the same branch as where they die. This ensures that when two
or more branches target the same operand we do not try to free
it more than once. This does however not implement freeing the local
upon branch merging yet.
When reusing an operand it increases the reference count, then when
an operand dies it will only decrease the reference count. When
this reaches 0, the local will be virtually freed, meaning it can be
re-used for a new local.
By reference counting the locals, we can ensure that when we free
a local, no local will be reused while it still has references pointing
to it. This prevents misscompilations. The compiler will also panic if
we free a local more than we reference it, introducing extra safety to
ensure they match up.
This hooks reusal of locals into liveness analysis.
Meaning that when an operand dies, and is a local,
it will automatically be freed so it can be re-used
when a new local is required. The result of this, is
a lower allocation required for locals. Having less
locals means smaller binary size, as well as faster
compilation speed when loaded by the runtime.
* When a field starts at some bit offset within a byte you need to load
starting from that byte and shift, not starting from the next byte,
so a rounded-down divide is required here, not a rounded-up one.
* Remove paragraph from doc that no longer relates to anything.
Closes#12363
When we want a runtime pointer to a zero-bit value we use an undef
pointer, but what if we want a runtime pointer to a comptime-only value?
Normally, if `T` is a comptime-only type such as `*const comptime_int`,
then `*const T` would also be a comptime-only type, so anything
referencing a comptime-only value is usually also comptime-only, and
therefore not emitted to the executable.
However, what if instead we have a `*const anyopaque` pointing to a
comptime-only value? Certainly, `*const anyopaque` is a runtime type,
and so we need some runtime value to store, even when it happens to be
pointing to a comptime-only value. In this case we want to do the same
thing as we do when pointing to a zero-bit value, so we use
`hasRuntimeBits` to handle both cases instead of ignoring comptime.
Closes#12025