This makes progress be exposed to the top-level caller of update().
I tossed in a bonus change: when the `zig build` subcommand sees exit
code 2, it omits the "following command failed" line, and the build
runner uses exit code 2 when there are compile errors. This tidies up
the output on build failure by a little bit.
The compiler now provides a server protocol for an interactive session
with another process. The build runner uses this protocol to communicate
compilation errors semantically from zig compiler subprocesses to the
build runner.
The protocol is exposed via stdin/stdout, or on a network socket,
depending on whether the CLI flag `--listen=-` or e.g.
`--listen=127.0.0.1:1337` is used.
Additionally:
* add the zig version string to the build runner cache prefix
* remove --prominent-compile-errors CLI flag because it no longer does
anything. Compilation errors are now unconditionally displayed at the
bottom of the build summary output when using the terminal-based
build runner.
* Remove the color field from std.Build. The build steps are no longer
supposed to interact with stderr directly. Instead they communicate
semantically back to the build runner, which has its own logic about
TTY configuration.
* Use the cleanExit() pattern in the build runner.
* Build steps can now use error.MakeFailed when they have already
properly reported an error, or they can fail with any other error
code in which case the build runner will create a simple message
based on this error code.
Introduces std.zig.ErrorBundle which is a trivially serializeable set
of compilation errors. This is in the standard library so that both
the compiler and the build runner can use it. The idea is they will
use it to communicate compilation errors over a binary protocol.
The binary encoding of ErrorBundle is a bit problematic - I got a little
too aggressive with compaction. I need to change it in a follow-up
commit to use some indirection in the error message list, otherwise
iteration is too unergonomic. In fact it's so problematic right now that
the logic getAllErrorsAlloc() actually fails to produce a viable
ErrorBundle because it puts SourceLocation data in between the root
level ErrorMessage data.
This commit has a simplification - redundant logic for rendering AST
errors to stderr has been removed in favor of moving the logic for
lowering AST errors into AstGen. So even if we get parse errors, the
errors will get lowered into ZIR before being reported. I believe this
will be useful when working on --autofix. Either way, some redundant
brittle logic was happily deleted.
In Compilation, updateSubCompilation() is improved to properly perform
error reporting when a sub-compilation object fails. It no longer dumps
directly to stderr; instead it populates an ErrorBundle object, which
gets added to the parent one during getAllErrorsAlloc().
In package fetching code, instead of dumping directly to stderr, it now
populates an ErrorBundle object, and gets properly reported at the CLI
layer of abstraction.
- improve fn prototypes of process_vm_writev
- make the memory writable in the ELF file
- force the linker to always append the function
- write updates with process_vm_writev
Zig's build script has several race conditions preventing proper
concurrent builds from working. By using -j1 for now, finishing this
branch (concurrent zig builds) is untangled from the separate problem of
correcting concurrency issues with zig's own build script.
In other words, let's solve one problem at a time.
With this commit, the build runner now communicates progress towards
completion of the step graph to the terminal, while also printing the
stderr of child processes as soon as possible, without clobbering each
other, and without clobbering the CLI progress output.
API users can take advantage of these to freely write to the terminal
which has an ongoing progress display, similar to what Ninja does when
compiling C/C++ objects and a warning or error message is printed.
* Step.init() now takes an options struct
* Step.init() now captures a small stack trace and stores it in the
Step so that it can be accessed when printing user-friendly debugging
information, including the lines of code that created the step in
question.
Instead of dumping directly to stderr. This prevents processes running
simultaneously from racing their stderr against each other.
For now it only reports at the end, but an improvement would be to
report as soon as a failed step occurs.
After sorting the step stack so that dependencies can be popped before
their dependants are popped, there is still a situation left to handle
correctly:
Example:
A depends on:
B
C
D depends on:
E
F
They will be ordered like this:
A B C D E F
If there are 6+ cores, then all of them will be evaluated at once,
incorrectly evaluating A and D before their dependencies.
Starting evaluation of F and then E is correct, but waiting until they
are done is not correct because it should start working on B and C as
well.
This commit solves the problem by computing dependants in the dependency
loop checking logic, and then having workers queue up their dependants
when they finish their own work.
Implementation of the IND-CCA2 post-quantum secure key encapsulation
mechanism (KEM) CRYSTALS-Kyber, as submitted to the third round of the NIST
Post-Quantum Cryptography (v3.02/"draft00"), and selected for standardisation.
Co-authored-by: Frank Denis <124872+jedisct1@users.noreply.github.com>