-airLoad and airStore now properly report an error if they are used with an array, instead of having the C compiler emit a vague error
-airStoreUndefined now works with array types
-structFieldPtr now works with array types, allowing generics' tests to pass
-add additional test cases that were found to be passing
-add basic int128 test cases which previously did not pass but weren't covered
-most test cases in cast.zig now pass
-i128/u128 or smaller int constants can now be rendered
-unsigned int constants are now always suffixed with 'u' to prevent random compile errors
-pointers with a val tag of 'zero' now just emit a 0 constant which coerces to the pointer type and fixes some warnings with ordered comparisons
-pointers with a val tag of 'one' are now casted back to the pointer type
-support pointers with a u64 val
-fix bug where rendering an array's type will emit more indirection than is needed
-render uint128_t/int128_t manually when needed
-implement ptr_add/sub AIR handlers manually so they manually cast to int types which avoids UB if the result or ptr operand is NULL
-implement airPtrElemVal/Ptr
-airAlloc for arrays will not allocate a ref as the local for the array is already a reference/pointer to the array itself
-fix airPtrToInt by casting to the int type
The symbol "_tls_index" gets lost when using LTO.
Disabling LTO on the object file that defines it allows the link to work.
fixes https://github.com/ziglang/zig/issues/8531
* wasm: Move wasm's codegen to arch/wasm/CodeGen.zig
* wasm: Define Wasm's Mir
This declares the initial most-used instructions for wasm as
well as the data that represents them.
TODO: Add binary operand opcodes.
By re-using the wasm opcode values, we can emit each opcode very easily
by simply using `@enumToInt()`. However, this poses a possible problem:
If we use all of wasm's opcodes, it leaves us no room to use synthetic opcodes such as debugging instructions.
We could use reserved opcodes, but the wasm spec may use them at some point.
TODO: Check if we should perhaps use a 16bit tag where the highest bits are used for synthetic opcodes.
* wasm: Define basic Emit structure
* wasm: Implement corresponding Emit functions for MIR
* wasm: Initial lowering to MIR
- This implements lowering to MIR from AIR for storing and loading of locals
as well as emitting immediates.
- Relocating function indexes has been simplified a lot as well as we no
longer need to patch offsets and we write a relocatable value instead.
- Locals are now emitted at the beginning of the function section entry
meaning all offsets we generate are stable.
* wasm: Lower all AIR instructions to MIR
* wasm: Implement remaining MIR instructions
* wasm: Fix function relocations
* wasm: Get all tests working
* wasm: Make `Data` 4 bytes instead of 8.
- 64bit immediates are now stored in 2 seperate u32's.
- 64bit floats are now stored in 2 seperate u32's.
- `mem_arg` is now stored as a seperate payload in extra.
This commit makes airStore() handle undefined values directly instead of
delegating to renderValue(): the call to renderValue() happens too late,
when "dest = " has already been written to the stream, at which point
there's no sane way to initialize e.g. struct values by assignment.
Instead, we make airStore() use memset(dest, 0xaa, sizeof(dest)), which
should transparently handle all types.
Also moves the newly-passing tests to the top of test/behavior.zig.
1. Changed Zig pointers to functions to be typedef'd so then we can
treat them the same as other types.
2. Distinguished between const slices (zig_L prefix) and mut slices
(zig_M prefix).
3. Changed lowering of Zig "const pointers" (e.g. *const u8) to to C
"pointers to const" (e.g. const char *) rather than C "const
pointers" (e.g. char * const)
4. Ensured that all typedefs are "linked" even if the decl doesn't
require any forward declarations
5. Added test that exercises function pointer type rendering
6. Changed .slice_ptr instruction to allocate pointer local rather than
a uintptr_t local
This effectively allows us to compile
```zig
pub fn main() void {}
```
which then calls into `std.start`.
Changes required to make this happen:
* handle signed int to immediate in x86_64 and aarch64 codegen
* ensure that on arm64 macOS, `.x19` is a caller-preserved register -
I'm not sure about that one at all and would like to brainstorm it
with anyone interested and especially Joachim.
* finally, fix a bug in the linker - mark new got entry as dirty upon
atom growth.
New AIR instruction: `optional_payload_ptr_set`
It's like `optional_payload_ptr` except it sets the non-null bit.
When storing to the payload via a result location that is an optional,
`optional_payload_ptr_set` is now emitted. There is a new algorithm in
`zirCoerceResultPtr` which stores a dummy value through the result
pointer into a temporary block, and then pops off the AIR instructions
from the temporary block in order to determine how to transform the
result location pointer in case any in-between coercions need to happen.
Fixes a couple of behavior tests regarding optionals.
This is a breaking change. Before, usage looked like this:
```zig
const held = mutex.acquire();
defer held.release();
```
Now it looks like this:
```zig
mutex.lock();
defer mutex.unlock();
```
The `Held` type was an idea to make mutexes slightly safer by making it
more difficult to forget to release an aquired lock. However, this
ultimately caused more problems than it solved, when any data structures
needed to store a held mutex. Simplify everything by reducing the API
down to the primitives: lock() and unlock().
Closes#8051Closes#8246Closes#10105
--import-memory import memory from the environment
--initial-memory=[bytes] initial size of the linear memory
--max-memory=[bytes] maximum size of the linear memory
--global-base=[addr] where to start to place global data
See #8633
1. Function signatures that return a no member struct return void
2. Undefined var decls don't get a value generated for them
3. Don't generate bitcast code if the result isn't used, since
bitcast is a pure function. Right now struct handling code
generates some weird unused bitcast AIR, and this optimization
side steps that issue.
* incorporate Andrew's MIR draft as Mir.zig
* add skeleton for Emit.zig module - Emit will lower MIR into
machine code or textual ASM.
* implement push
* implement ret
* implement mov r/m, r
* implement sub r/m imm and sub r/m, r
* put encoding common ops together - some ops share impl such as
MOV and cmp so put them together and vary the actual opcode
with modRM ext only.
* implement pop
* implement movabs - movabs being a special-case of mov not
handled by general mov MIR instruction due to requirement to
handle 64bit immediates.
* store imm64 as a struct `Imm64{ msb: u32, lsb: u32 }` in extra data
for use with for instance movabs inst
* implement more mov variations
* implement adc
* implement add
* implement sub
* implement xor
* implement and
* implement or
* implement sbb
* implement cmp
* implement lea - lea doesn't follow the scheme as other inst above. Similarly, I
think bit shifts and rotates should be put in a separate basket too.
* implement adc_scale_src
* implement add_scale_src
* implement sub_scale_src
* implement xor_scale_src
* implement and_scale_src
* implement or_scale_src
* implement sbb_scale_src
* implement cmp_scale_src
* implement adc_scale_dst
* implement add_scale_dst
* implement sub_scale_dst
* implement xor_scale_dst
* implement and_scale_dst
* implement or_scale_dst
* implement sbb_scale_dst
* implement cmp_scale_dst
* implement mov_scale_src
* implement mov_scale_dst
* implement adc_scale_imm
* implement add_scale_imm
* implement sub_scale_imm
* implement xor_scale_imm
* implement and_scale_imm
* implement or_scale_imm
* implement sbb_scale_imm
* implement cmp_scale_imm
* port bin math to MIR
* backpatch stack size into prev MIR inst
* implement Function.gen() (minus dbg info)
* implement jmp/call [imm] - we can now call functions using indirect absolute
addressing, or via registers.
* port airRet to use MIR
* port airLoop to use MIR
* patch up performReloc to use inst indices
* implement conditional jumps (without relocs)
* implement set byte on condition
* implement basic lea r64, [rip + imm]
* implement calling externs
* implement callq in PIE
* implement lea RIP in PIE context
* remove all refs to Encoder from CodeGen
* implement basic imul ops
* pass all Linux tests!
* enable most of dbg info gen
* generate arg dbg info in Emit
GetCurrentDirectory returns a path with a trailing slash iff the cwd is
a root directory, making the code in `resolveWindows` return an invalid
path with two consecutive slashes.
Closes#10093