The `.empty` map in a shard is weird: it claims to have capacity 1, but
you're not actually allowed to actually use that capacity. That's fine
for the normal insertion algorithm, because it always resizes to a
higher capacity when inserting the initial element. However,
`rehashTrackedInsts` was not aware of this caveat, so sometimes tried to
store to the single element of the `empty` map.
This system exists to avoid an extra branch in the main resizing logic
(since `new_cap = old_cap * 2` only works if the capacity is never
non-zero). However, it's fine for `rehashTrackedInsts` to have an extra
branch to handle this case, since it's literally called once per update.
This commit separates semantic analysis of the annotated type vs value
of a global declaration, therefore allowing recursive and mutually
recursive values to be declared.
Every `Nav` which undergoes analysis now has *two* corresponding
`AnalUnit`s: `.{ .nav_val = n }` and `.{ .nav_ty = n }`. The `nav_val`
unit is responsible for *fully resolving* the `Nav`: determining its
value, linksection, addrspace, etc. The `nav_ty` unit, on the other
hand, resolves only the information necessary to construct a *pointer*
to the `Nav`: its type, addrspace, etc. (It does also analyze its
linksection, but that could be moved to `nav_val` I think; it doesn't
make any difference).
Analyzing a `nav_ty` for a declaration with no type annotation will just
mark a dependency on the `nav_val`, analyze it, and finish. Conversely,
analyzing a `nav_val` for a declaration *with* a type annotation will
first mark a dependency on the `nav_ty` and analyze it, using this as
the result type when evaluating the value body.
The `nav_val` and `nav_ty` units always have references to one another:
so, if a `Nav`'s type is referenced, its value implicitly is too, and
vice versa. However, these dependencies are trivial, so, to save memory,
are only known implicitly by logic in `resolveReferences`.
In general, analyzing ZIR `decl_val` will only analyze `nav_ty` of the
corresponding `Nav`. There are two exceptions to this. If the
declaration is an `extern` declaration, then we immediately ensure the
`Nav` value is resolved (which doesn't actually require any more
analysis, since such a declaration has no value body anyway).
Additionally, if the resolved type has type tag `.@"fn"`, we again
immediately resolve the `Nav` value. The latter restriction is in place
for two reasons:
* Functions are special, in that their externs are allowed to trivially
alias; i.e. with a declaration `extern fn foo(...)`, you can write
`const bar = foo;`. This is not allowed for non-function externs, and
it means that function types are the only place where it is possible
for a declaration `Nav` to have a `.@"extern"` value without actually
being declared `extern`. We need to identify this situation
immediately so that the `decl_ref` can create a pointer to the *real*
extern `Nav`, not this alias.
* In certain situations, such as taking a pointer to a `Nav`, Sema needs
to queue analysis of a runtime function if the value is a function. To
do this, the function value needs to be known, so we need to resolve
the value immediately upon `&foo` where `foo` is a function.
This restriction is simple to codify into the eventual language
specification, and doesn't limit the utility of this feature in
practice.
A consequence of this commit is that codegen and linking logic needs to
be more careful when looking at `Nav`s. In general:
* When `updateNav` or `updateFunc` is called, it is safe to assume that
the `Nav` being updated (the owner `Nav` for `updateFunc`) is fully
resolved.
* Any `Nav` whose value is/will be an `@"extern"` or a function is fully
resolved; see `Nav.getExtern` for a helper for a common case here.
* Any other `Nav` may only have its type resolved.
This didn't seem to be too tricky to satisfy in any of the existing
codegen/linker backends.
Resolves: #131
The `Cau` abstraction originated from noting that one of the two primary
roles of the legacy `Decl` type was to be the subject of comptime
semantic analysis. However, the data stored in `Cau` has always had some
level of redundancy. While preparing for #131, I went to remove that
redundany, and realised that `Cau` now had exactly one field: `owner`.
This led me to conclude that `Cau` is, in fact, an unnecessary level of
abstraction over what are in reality *fundamentally different* kinds of
analysis unit (`AnalUnit`). Types, `Nav` vals, and `comptime`
declarations are all analyzed in different ways, and trying to treat
them as the same thing is counterproductive!
So, these 3 cases are now different alternatives in `AnalUnit`. To avoid
stealing bits from `InternPool`-based IDs, which are already a little
starved for bits due to the sharding datastructures, `AnalUnit` is
expanded to 64 bits (30 of which are currently unused). This doesn't
impact memory usage too much by default, because we don't store
`AnalUnit`s all too often; however, we do store them a lot under
`-fincremental`, so a non-trivial bump to peak RSS can be observed
there. This will be improved in the future when I made
`InternPool.DepEntry` less memory-inefficient.
`Zcu.PerThread.ensureCauAnalyzed` is split into 3 functions, for each of
the 3 new types of `AnalUnit`. The new logic is much easier to
understand, because it avoids conflating the logic of these
fundamentally different cases.
The new representation is often more compact. It is also more
straightforward to understand: for instance, `extern` is represented on
the `declaration` instruction itself rather than using a special
instruction. The same applies to `var`, making both of these far more
compact.
This commit also separates the type and value bodies of a `declaration`
instruction. This is a prerequisite for #131.
In general, `declaration` now directly encodes details of the syntax
form used, and the embedded ZIR bodies are for actual expressions. The
only exception to this is functions, where ZIR is effectively designed
as if we had #1717. `extern fn` declarations are modeled as
`extern const` with a function type, and normal `fn` definitions are
modeled as `const` with a `func{,_fancy,_inferred}` instruction. This
may change in the future, but improving on this was out of scope for
this commit.
looking at `man getgroups` and `info getgroups` this is given as an
example:
```c
// Here's how to use ‘getgroups’ to read all the supplementary group
// IDs:
gid_t *
read_all_groups (void)
{
int ngroups = getgroups (0, NULL);
gid_t *groups
= (gid_t *) xmalloc (ngroups * sizeof (gid_t));
int val = getgroups (ngroups, groups);
if (val < 0)
{
free (groups);
return NULL;
}
return groups;
}
```
getgroups(0, NULL) is used to get the count of groups so that the
correct count can be used to allocate a list of gid_t. This small changes makes this
possible.
equivalent example in Zig after the change:
```zig
// get the group count
const ngroups: usize = std.os.linux.getgroups(0, null);
if (ngroups <= 0) {
return error.GetGroupsError;
}
std.debug.print("number of groups: {d}\n", .{ngroups});
const groups_gids: []u32 = try alloc.alloc(u32, ngroups);
// populate an array of gid_t
_ = std.os.linux.getgroups(ngroups, @ptrCast(groups_gids));
```
There's been some proliferation of dependency URLs that reference
mutable data such as links to git branches that can change. This has
resulted in broken projects, i.e.
* 9eef9de94c/build.zig.zon
* 4b64353e9c
There's also disagreement about whether it's fine for URL's to point to
git branches, i.e.
https://github.com/Not-Nik/raylib-zig/pull/130
This updates the docs to mention that zig won't be able to use URLs if
their content changes.
compiler: disallow `callconv` etc from depending on function parameters
Also, disallow `align`/`linksection`/`addrspace` annotations on container-level declarations with comptime-only types.
This includes function aliases, but not function declarations.
Also, re-introduce a target check for function alignment which was
inadvertently removed in the prior commit.