There are many different types of Windows paths, and there are a few different possible namespaces on top of that. Before this commit, NT namespaced paths were somewhat supported, and for Win32 paths (those without a namespace prefix), only relative and drive absolute paths were supported. After this commit, all of the following are supported:
- Device namespaced paths (`\\.\`)
- Verbatim paths (`\\?\`)
- NT-namespaced paths (`\??\`)
- Relative paths (`foo`)
- Drive-absolute paths (`C:\foo`)
- Drive-relative paths (`C:foo`)
- Rooted paths (`\foo`)
- UNC absolute paths (`\\server\share\foo`)
- Root local device paths (`\\.` or `\\?` exactly)
Plus:
- Any of the path types and namespace types can be mixed and matched together as appropriate.
- All of the `std.os.windows.*ToPrefixedFileW` functions will accept any path type, prefixed or not, and do the appropriate thing to convert them to an NT-prefixed path if necessary.
This is achieved by making the `std.os.windows.*ToPrefixedFileW` functions behave like `ntdll.RtlDosPathNameToNtPathName_U`, but with a few differences:
- Does not allocate on the heap (this is why we can't use `ntdll.RtlDosPathNameToNtPathName_U` directly, it does internal heap allocation).
- Relative paths are kept as relative unless they contain too many .. components, in which case they are treated as 'drive relative' and resolved against the CWD (this is how it behaved before this commit as well).
- Special case device names like COM1, NUL, etc are not handled specially (TODO)
- `.` and space are not stripped from the end of relative paths (potential TODO)
Most of the non-trivial conversion of non-relative paths is done via `ntdll.RtlGetFullPathName_U`, which AFAIK is used internally by `ntdll.RtlDosPathNameToNtPathName_U`.
Some relevant reading on Windows paths:
- https://googleprojectzero.blogspot.com/2016/02/the-definitive-guide-on-win32-to-nt.html
- https://chrisdenton.github.io/omnipath/Overview.htmlCloses#8205
Might close (untested) #12729
Note:
- This removes checking for illegal characters in `std.os.windows.sliceToPrefixedFileW`, since the previous solution (iterate the whole string and error if any illegal characters were found) was naive and won't work for all path types. This is further complicated by things like file streams (where `:` is used as a delimiter, e.g. `file.ext:stream_name:$DATA`) and things in the device namespace (where a path like `\\.\GLOBALROOT\??\UNC\localhost\C$\foo` is valid despite the `?`s in the path and is effectively equivalent to `C:\foo`). Truly validating paths is complicated and would need to be tailored to each path type. The illegal character checking being removed may open up users to more instances of hitting `OBJECT_NAME_INVALID => unreachable` when using `fs` APIs.
+ This is related to https://github.com/ziglang/zig/issues/15607
FILE_DISPOSITION_ON_CLOSE is used to set/clear the FILE_DELETE_ON_CLOSE,
but we do not use that anymore and FILE_DISPOSITION_POSIX_SEMANTICS
already implies unmapping of the handle and removal fo it on close.
Justification: When a file is deleted on Windows, it may not be
immediately removed from the directory. This can cause problems
with future scans of that directory, which will see the partially
deleted file. Under some workloads and system configurations,
Windows files may appear to be deleted immediately.
This is the PR with requested fixup. Thanks to @SpexGuy for the
original PR.
The majority of these are in comments, some in doc comments which might
affect the generated documentation, and a few in parameter names -
nothing that should be breaking, however.
Now they use slices or array pointers with any element type instead of
requiring byte pointers.
This is a breaking enhancement to the language.
The safety check for overlapping pointers will be implemented in a
future commit.
closes#14040
DELETE_PENDING can happen when the file is yet to be closed for deletion
or if it never get closed. In that case, DeleteFile should assume the
file deletion is succeeding (no CloseHandle is required as it's a "failure"). In case of `DELETE_PENDING` failure, the file
may still exist. In which case if it's part of `deleteTree`, it will
eventually fail on `error.DirNotEmpty`.
Using `FILE_DELETE_ON_CLOSE` can silently succeed without reporting any error
on non-empty directory. This commit adds usage of NtSetInformationFile
which will report `DIRECTORY_NOT_EMPTY`.
`GetPhysicallyInstalledSystemMemory` uses SMBios to grab the physical
memory size which can lead to unecessary allocation and inacurate
representation of the total memory. Using `System_Basic_Information`
help to retrieve the physical memory which is not reserved for the
kernel/tables. This aligns better with the linux side as `/proc/meminfo`
does the same thing.
`GetProcessMemoryInfo` is implemented using `NtQueryInformationProcess`
with `ProcessVmCounters` to obtain `VM_COUNTERS`. The structs, enum
definitions are found in `winternl.h` or `ntddk.h` in the latest WDK.
This should give the same results as using `K32GetProcessMemoryInfo`
* Fix GetFileInformationByHandle compile error
The wrapper function was mistakenly referencing ntdll.zig when the actual function is declared in kernel32.zig.
* delete GetFileInformationByHandle since it's not used by the stdlib
This function is unused, and the current implementation contains a few footguns:
- The current wrapper treats all possible errors as unexpected, even likely ones like BUFFER_OVERFLOW (which is returned if the size of the out_buffer is too small to contain all the variable-length members of the requested info, which the user may not actually care about)
- Each caller may need to handle errors differently, different errors might be possible depending on the FILE_INFORMATION_CLASS, etc, and making a wrapper that handles all of those different use-cases nicely seems like it'd be more trouble than it's worth (FILE_INFORMATION_CLASS has 76 different possible values)
If a wrapper for NtQueryInformationFile is wanted, then it should probably have wrapper functions per-use-case, like how QueryObjectName wraps NtQueryObject for the `ObjectNameInformation` class
This error means that there *was* a file in this location on the file
system, but it was deleted. However, the OS is not finished with the
deletion operation, and so this CreateFile call has failed. There is not
really a sane way to handle this other than retrying the creation after
the OS finishes the deletion.
- Fixes the first few code units of the name being omitted (it was using `@sizeOf(FILE_NAME_INFO)` as the start of the name bytes, but that includes the length of the dummy [1]u16 field and padding; instead the start should be the offset of the dummy [1]u16 field)
- Replaces kernel32.GetFileInformationByHandleEx call with ntdll.NtQueryInformationFile
+ Contributes towards #1840
- Checks that the handle is a named pipe first before querying and checking the name, which is a much faster call than NtQueryInformationFile (this was about a 10x speedup in my probably-not-so-good/take-it-with-a-grain-of-salt benchmarking)
This fixes a bug in std.net caused during the introduction of
meta.assumeSentinel due to the unfortunate semantics of mem.span()
This leaves only 3 remaining uses of meta.assumeSentinel() in the
standard library, each of which could be a simple @ptrCast([*:0]T, foo)
instead. I think this function should likely be removed.
windows: add RtlCaptureContext, RtlLookupFunctionEntry, RtlVirtualUnwind and supporting types
windows: fix alignment of CONTEXT structs to match winnt.h as required by RtlCaptureContext (fxsave instr)
windows aarch64: fix __chkstk being defined twice if libc is not linked on msvc
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
- Add .StaticInitializer to ValueRenderLocation to indicate that the emitted values
must be constant expressions (no function calls, struct casting).
- Add new path for special float types (nan, inf) that works in constant expressions
- Implement windows.teb() using a syscall for .stage2_c because x64 MSVC
doesn't support any kind of inline asm
The name of the game here is to avoid CreateProcessW calls at all costs,
and only ever try calling it when we have a real candidate for execution.
Secondarily, we want to minimize the number of syscalls used when checking
for each PATHEXT-appended version of the app name.
An overview of the technique used:
- Open the search directory for iteration (either cwd or a path from PATH)
- Use NtQueryDirectoryFile with a wildcard filename of `<app name>*` to
check if anything that could possibly match either the unappended version
of the app name or any of the versions with a PATHEXT value appended exists.
- If the wildcard NtQueryDirectoryFile call found nothing, we can exit early
without needing to use PATHEXT at all.
This allows us to use a <open dir, NtQueryDirectoryFile, close dir> sequence
for any directory that doesn't contain any possible matches, instead of having
to use a separate look up for each individual filename combination (unappended +
each PATHEXT appended). For directories where the wildcard *does* match something,
we only need to do a maximum of <number of supported PATHEXT extensions> more
NtQueryDirectoryFile calls.
---
In addition, we now only evaluate the extensions in PATHEXT that we know we can handle (.COM, .EXE, .BAT, .CMD) and ignore the rest.
---
This commit also makes two edge cases match Windows behavior:
- If an app name has the extension .exe and it is attempted to be executed, that is now treated as unrecoverable and InvalidExe is immediately returned no matter where the .exe is (cwd or in the PATH). This matches the behavior of the Windows cmd.exe.
- If the app name contains more than just a filename (e.g. it has path separators), then it is excluded from PATH searching and only does a cwd search. This matches the behavior of Windows cmd.exe.
There are still a few occurrences of "stage1" in the standard library
and self-hosted compiler source, however, these instances need a bit
more careful inspection to ensure no breakage.