This function took a parameter that was only ever used with one value,
obscuring the fact that it was a regular `block` which should be used with
`.break` and not `.break_inline`.
* make it always return a fully qualified name. stage1 is inconsistent
about this.
* AstGen: fix anon_name_strategy to correctly be `func` when anon type
creation happens in the operand of the return expression.
* Sema: implement type names for the "function" naming strategy.
* Put "enum", "union", "opaque", or "struct" in place of "anon" when
creating respective anonymous Decl names.
* std.testing: add `expectStringStartsWith`. Didn't end up using it
after all.
Also this enables the real test runner for stage2 LLVM backend (sans
wasm32) since it works now.
Instead of doing it before the switch tower, do it afterwards, so that
special handling may be done before undefined gets casted to the
destination type.
In this case the special handling we want to do is *[N]T to []T setting
the slice length based on the array length, even when the array value is
undefined.
When a generic call evaluates to a generic type, the call will be re-generated.
However, the old function was not freed before being re-generated, causing a memory leak.
So rather than only returning an error, we first free the old value.
Notably, Value.eql and Value.hash are improved to treat NaN as equal to
itself, so that Type/Value can be hash map keys. Likewise float hashing
normalizes the float value before computing the hash.
When the length is comptime-known, we perform an inline loop instead of emitting
a runtime loop into the binary.
This also allows us to easily write 'undefined' to aggregate types.
We now do this when we set the error tag of an error union where the payload will be set to undefined.
This implements the `memcpy` instruction and also updates the inline memcpy calls
to make use of the same implementation. We use the fast-loop when the length is comptime known,
and use a runtime loop when the length is runtime known.
We also perform feature-dection to emit a simply wasm memory.copy instruction when the feature
'bulk-memory' is enabled. (off by default).
This reverts commit 8e7b1a74ac4568a2b806026f210ae59e52d2768d.
Sorry, I should have put up a PR and ran that one by Jakub and done some
more inspection.
This causes problems with gdb:
BFD: /home/andy/dev/zig/build-release/test: invalid string offset 3254779904 >= 153524 for section `.shstrtab'
This fixes lack of stack traces on arm64 macOS which were regressed
and not getting generated at all after this addition to write
current stack traces. Prior to this, function `isValidMemory` would
sync two subsequent pages if the aligned (base) address was different
than the frame pointer. I fail to see what the logic for such assumption
here is as the manual of `msync` clearly states it will fail with error
if the passed in memory region length contains unmapped regions.
This was the very reason why there were no stack traces print on
arm64 macOS as the second page was unmapped thus incorrectly flagging
the frame pointer as invalid.
* Sema: fix `zirTypeInfo` allocating with the wrong arenas for some
stuff.
* LLVM: split `airDbgInline` into two functions, one for each AIR tag.
- remove the redundant copy to type_map_arena. This is the first
thing that lowerDebugType does so this hack was probably just
accidentally avoiding UB (which is still present prior to this
commit).
- don't store an inline fn inst into the di_map for the generic
decl.
- use a dummy function type for the debug info to avoid whatever UB
is happening.
- we are now ignoring the function type passed in with the
dbg_inline_begin and dbg_inline_end.
* behavior tests: prepare the vector tests to be enabled one at a time.
Mitigates #11199.
`testing.expect` is better than `testing.expectEqual` for behavior
tests. Better for behavior tests to stick to only testing the limited
behavior they are meant to test and avoid functions such as
`expectEqual` that drag in too much of the standard library (in this
case to print helpful diffs about why a value is not equal to another).
Adds the sentinel element to the type name to avoid ambiguous
declarations, and outputs the sentinel element (if needed) even in what
would otherwise be empty arrays.
I think that reusing the ComptimePtrLoad infrastructure is ultimately
less logic and more robust than adding a `direct` flag to elem_ptr.
* Some code in zirTypeInfo needed to be fixed to create proper
Type/Value encodings.
* comptime elemVal works by constructing an elem_ptr Value and then
using the already existing pointerDeref function.
There are some remaining calls to Value.elemValue which should be
considered code smells at this point.
This fixes one of the major issues plaguing the `std.sort` comptime tests.
The high level issue is that at comptime, we need to know whether `elem_ptr` is
being used to subslice an array-like pointer or access a child value. High-level
example:
var x: [2][2]i32 = undefined;
var a = &x[0]; // elem_ptr, type *[2]i32
var y: [5]i32 = undefined;
var b = y[1..3]; // elem_ptr, type *[2]i32
`a` is pointing directly to the 0th element of `x`. But `b` is
subslicing the 1st and 2nd element of `y`. At runtime with a well
defined memory layout, this is an inconsequential detail. At comptime,
the values aren't laid out exactly in-memory so we need to know the
difference.
This becomes an issue specifically in this case:
var c: []i32 = a;
var d: []i32 = b;
When converting the `*[N]T` to `[]T` we need to know what array to point
to. For runtime, its all the same. For comptime, we need to know if its
the parent array or the child value.
See the behavior tests for more details.
This commit fixes this by adding a boolean to track this on the
`elem_ptr`. We can't just immediately deref the child for `&x[0]`
because it is legal to ptrCast it to a many-pointer, do arithmetic, and
then cast it back (see behavior test) so we need to retain access to the
"parent" indexable.
Currently, the new API will only be available on macOS with
the intention of adding more POSIX systems to it incrementally
(such as Linux, etc.).
Changes:
* add `posix_spawn` wrappers in a separate container in
`os/posix_spawn.zig`
* rewrite `ChildProcess.spawnPosix` using `posix_spawn` targeting macOS
as `ChildProcess.spawnMacos`
* introduce a `posix_spawn` specific `std.c.waitpid` wrapper which
does return an error in case the child process failed to exec - this
is required for any process that was spawned using `posix_spawn`
mechanism as, by definition, the errors returned by `posix_spawn`
routine cover only the `fork`-equivalent; `pre-exec()` and `exec()`
steps are covered by a catch-all error `ECHILD` returned by `waitpid`
on unsuccessful execution, e.g., no such file error, etc.