Before calling populateTestFunctions() we want to check
totalErrorCount() but that will read from some tables that might get
populated by the thread pool for C compilation tasks. So we wait until
all those tasks are finished before proceeding.
Frontend improvements:
* When compiling in `zig test` mode, put a task on the work queue to
analyze the main package root file. Normally, start code does
`_ = import("root");` to make Zig analyze the user's code, however in
the case of `zig test`, the root source file is the test runner.
Without this change, no tests are picked up.
* In the main pipeline, once semantic analysis is finished, if there
are no compile errors, populate the `test_functions` Decl with the
set of test functions picked up from semantic analysis.
* Value: add `array` and `slice` Tags.
LLVM backend improvements:
* Fix incremental updates of globals. Previously the
value of a global would not get replaced with a new value.
* Fix LLVM type of arrays. They were incorrectly sending
the ABI size as the element count.
* Remove the FuncGen parameter from genTypedValue. This function is for
generating global constants and there is no function available when
it is being called.
- The `ref_val` case is now commented out. I'd like to eliminate
`ref_val` as one of the possible Value Tags. Instead it should
always be done via `decl_ref`.
* Implement constant value generation for slices, arrays, and structs.
* Constant value generation for functions supports the `decl_ref` tag.
* Add AIR instruction: struct_field_val
- This is part of an effort to eliminate the AIR instruction `ref`.
- It's implemented for C backend and LLVM backend so far.
* Rename `resolvePossiblyUndefinedValue` to `resolveMaybeUndefVal` just
to save some columns on long lines.
* Sema: add `fieldVal` alongside `fieldPtr` (renamed from
`namedFieldPtr`). This is part of an effort to eliminate the AIR
instruction `ref`. The idea is to avoid unnecessary loads, stores,
stack usage, and IR instructions, by paying a DRY cost.
LLVM backend improvements:
* internal linkage vs exported linkage is implemented, along with
aliases. There is an issue with incremental updates due to missing
LLVM API for deleting aliases; see the relevant comment in this commit.
- `updateDeclExports` is hooked up to the LLVM backend now.
* Fix usage of `Type.tag() == .noreturn` rather than calling `isNoReturn()`.
* Properly mark global variables as mutable/constant.
* Fix llvm type generation of function pointers
* Fix codegen for calls of function pointers
* Implement llvm type generation of error unions and error sets.
* Implement AIR instructions: addwrap, subwrap, mul, mulwrap, div,
bit_and, bool_and, bit_or, bool_or, xor, struct_field_ptr,
struct_field_val, unwrap_errunion_err, add for floats, sub for
floats.
After this commit, `zig test` on a file with `test "example" {}`
correctly generates and executes a test binary. However the
`test_functions` slice is undefined and just happens to be going into
the .bss section, causing the length to be 0. The next step towards
`zig test` will be replacing the `test_functions` Decl Value with the
set of test function pointers, before it is sent to linker/codegen.
@select(
comptime T: type,
pred: std.meta.Vector(len, bool),
a: std.meta.Vector(len, T),
b: std.meta.Vector(len, T)
) std.meta.Vector(len, T)
Constructs a vector from a & b, based on the values in the predicate vector. For indices where the predicate value is true, the corresponding
element from the a vector is selected, and otherwise from b.
* properly set global variables to const if they are not a global
variable.
* implement global variable initializations.
* initial implementation of llvmType() for structs and functions.
* implement genTypedValue for variable tags
* implement more AIR instructions: varptr, slice_ptr, slice_len,
slice_elem_val, ptr_slice_elem_val, unwrap_errunion_payload,
unwrap_errunion_payload_ptr, unwrap_errunion_err,
unwrap_errunion_err_ptr.
These AIR instructions are the next blockers for `zig test` to work for
this backend.
After this commit, the "hello world" x86_64 test case passes for the
LLVM backend as well.
This is an initial version, todo:
- Also make this work for u64 values, as the table must be indexed by u32.
- Add support for signed integers.
- Add support for enums.
* There is now a main_pkg in addition to root_pkg. They are usually the
same. When using `zig test`, main_pkg is the user's source file and
root_pkg has the test runner.
* scanDecl no longer looks for test decls outside the package being
tested. honoring `--test-filter` is still TODO.
* test runner main function has a void return value rather than
`anyerror!void`
* Sema is improved to generate better AIR for for loops on slices.
* Sema: fix incorrect capacity calculation in zirBoolBr
* Sema: add compile errors for trying to use slice fields as an lvalue.
* Sema: fix type coercion for error unions
* Sema: fix analyzeVarRef generating garbage AIR
* C codegen: fix renderValue for error unions with 0 bit payload
* C codegen: implement function pointer calls
* CLI: fix usage text
Adds 4 new AIR instructions:
* slice_len, slice_ptr: to get the ptr and len fields of a slice.
* slice_elem_val, ptr_slice_elem_val: to get the element value of
a slice, and a pointer to a slice.
AstGen gains a new functionality:
* One of the unused flags of struct decls is now used to indicate
structs that are known to have non-zero size based on the AST alone.
The include_compiler_rt stored in the bin file options means that we need
compiler-rt symbols *somehow*. However, in the context of using the stage1 backend
we need to tell stage1 to include compiler-rt only if stage1 is the place that
needs to provide those symbols. Otherwise the stage2 infrastructure will take care
of it in the linker, by putting compiler_rt.o into a static archive, or linking
compiler_rt.a against an executable. In other words we only want to set this flag
for stage1 if we are using build-obj.
When using `build-exe` or `build-lib -dynamic`, `-fcompiler-rt` means building
compiler-rt into a static library and then linking it into the executable.
When using `build-lib`, `-fcompiler-rt` means building compiler-rt into an
object file and then adding it into the static archive.
Before this commit, when using `build-obj`, zig would build compiler-rt
into an object file, and then on ELF, use `lld -r` to merge it into the
main object file. Other linker backends of LLD do not support `-r` to
merge objects, so this failed with error messages for those targets.
Now, `-fcompiler-rt` when used with `build-obj` acts as if the user puts
`_ = @import("compiler_rt");` inside their root source file. The symbols
of compiler-rt go into the same compilation unit as the root source file.
This is hooked up for stage1 only for now. Once stage2 is capable of
building compiler-rt, it should be hooked up there as well.