* Adds new cpu architectures propeller1 and propeller2.
These cpu architectures allow targeting the Parallax Propeller 1 and Propeller 2, which are both very special microcontrollers with 512 registers and 8 cpu cores.
Resolves#21559
* Adds std.elf.EM.PROPELLER and std.elf.EM.PROPELLER2
* Fixes missing switch prongs in src/codegen/llvm.zig
* Fixes order in std.Target.Arch
---------
Co-authored-by: Felix "xq" Queißner <git@random-projects.net>
Introduces `std.builtin.Panic` which is a complete interface for
panicking. Provide `std.debug.FormattedPanic` and
`std.debug.SimplePanic` and let the user choose, or make their own.
There is one minor language change here, which is that comparisons of
the form `comptime_inf < runtime_f32` have their results comptime-known.
This is consistent with comparisons against comptime NaN for instance,
which are always comptime known. A corresponding behavior test is added.
This fixes a bug with int comparison elision which my previous commit
somehow triggered. `Sema.compareIntsOnlyPossibleResult` is much cleaner
now!
This commit introduces a new AIR instruction, `repeat`, which causes
control flow to move back to the start of a given AIR loop. `loop`
instructions will no longer automatically perform this operation after
control flow reaches the end of the body.
The motivation for making this change now was really just consistency
with the upcoming implementation of #8220: it wouldn't make sense to
have this feature work significantly differently. However, there were
already some TODOs kicking around which wanted this feature. It's useful
for two key reasons:
* It allows loops over AIR instruction bodies to loop precisely until
they reach a `noreturn` instruction. This allows for tail calling a
few things, and avoiding a range check on each iteration of a hot
path, plus gives a nice assertion that validates AIR structure a
little. This is a very minor benefit, which this commit does apply to
the LLVM and C backends.
* It should allow for more compact ZIR and AIR to be emitted by having
AstGen emit `repeat` instructions more often rather than having
`continue` statements `break` to a `block` which is *followed* by a
`repeat`. This is done in status quo because `repeat` instructions
only ever cause the direct parent block to repeat. Now that AIR is
more flexible, this flexibility can be pretty trivially extended to
ZIR, and we can then emit better ZIR. This commit does not implement
this.
Support for this feature is currently regressed on all self-hosted
native backends, including x86_64. This support will be added where
necessary before this branch is merged.
This commit modifies the representation of the AIR `switch_br`
instruction to represent ranges in cases. Previously, Sema emitted
different AIR in the case of a range, where the `else` branch of the
`switch_br` contained a simple `cond_br` for each such case which did a
simple range check (`x > a and x < b`). Not only does this add
complexity to Sema, which we would like to minimize, but it also gets in
the way of the implementation of #8220. That proposal turns certain
`switch` statements into a looping construct, and for optimization
purposes, we want to lower this to AIR fairly directly (i.e. without
involving a `loop` instruction). That means we would ideally like a
single instruction to represent the entire `switch` statement, so that
we can dispatch back to it with a different operand as in #8220. This is
not really possible to do correctly under the status quo system.
This commit implements lowering of this new `switch_br` usage in the
LLVM and C backends. The C backend just turns any case containing ranges
entirely into conditionals, as before. The LLVM backend is a little
smarter, and puts scalar items into the `switch` instruction, only using
conditionals for the range cases (which direct to the same bb). All
remaining self-hosted backends are temporarily regressed in the presence
of switch range cases. This functionality will be restored for at least
the x86_64 backend before merge.
instead of relying on the LLVM sancov pass. The LLVM pass is still
executed if trace_pc_guard is requested, disabled otherwise. The LLVM
backend emits the instrumentation directly.
It uses `__sancov_pcs1` symbol name instead of `__sancov_pcs` because
each element is 1 usize instead of 2.
AIR: add CoveragePoint to branch hints which indicates whether those
branches are interesting for code coverage purposes.
Update libfuzzer to use the new instrumentation. It's simplified since
we no longer need the constructor and the pcs are now in a continguous
list.
This is a regression in the fuzzing functionality because the
instrumentation for comparisons is no longer emitted, resulting in worse
fuzzer inputs generated. A future commit will add that instrumentation
back.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
Implements the accepted proposal to introduce `@branchHint`. This
builtin is permitted as the first statement of a block if that block is
the direct body of any of the following:
* a function (*not* a `test`)
* either branch of an `if`
* the RHS of a `catch` or `orelse`
* a `switch` prong
* an `or` or `and` expression
It lowers to the ZIR instruction `extended(branch_hint(...))`. When Sema
encounters this instruction, it sets `sema.branch_hint` appropriately,
and `zirCondBr` etc are expected to reset this value as necessary. The
state is on `Sema` rather than `Block` to make it automatically
propagate up non-conditional blocks without special handling. If
`@panic` is reached, the branch hint is set to `.cold` if none was
already set; similarly, error branches get a hint of `.unlikely` if no
hint is explicitly provided. If a condition is comptime-known, `cold`
hints from the taken branch are allowed to propagate up, but other hints
are discarded. This is because a `likely`/`unlikely` hint just indicates
the direction this branch is likely to go, which is redundant
information when the branch is known at comptime; but `cold` hints
indicate that control flow is unlikely to ever reach this branch,
meaning if the branch is always taken from its parent, then the parent
is also unlikely to ever be reached.
This branch information is stored in AIR `cond_br` and `switch_br`. In
addition, `try` and `try_ptr` instructions have variants `try_cold` and
`try_ptr_cold` which indicate that the error case is cold (rather than
just unlikely); this is reachable through e.g. `errdefer unreachable` or
`errdefer @panic("")`.
A new API `unwrapSwitch` is introduced to `Air` to make it more
convenient to access `switch_br` instructions. In time, I plan to update
all AIR instructions to be accessed via an `unwrap` method which returns
a convenient tagged union a la `InternPool.indexToKey`.
The LLVM backend lowers branch hints for conditional branches and
switches as follows:
* If any branch is marked `unpredictable`, the instruction is marked
`!unpredictable`.
* Any branch which is marked as `cold` gets a
`llvm.assume(i1 true) [ "cold"() ]` call to mark the code path cold.
* If any branch is marked `likely` or `unlikely`, branch weight metadata
is attached with `!prof`. Likely branches get a weight of 2000, and
unlikely branches a weight of 1. In `switch` statements, un-annotated
branches get a weight of 1000 as a "middle ground" hint, since there
could be likely *and* unlikely *and* un-annotated branches.
For functions, a `cold` hint corresponds to the `cold` function
attribute, and other hints are currently ignored -- as far as I can tell
LLVM doesn't really have a way to lower them. (Ideally, we would want
the branch hint given in the function to propagate to call sites.)
The compiler and standard library do not yet use this new builtin.
Resolves: #21148
before this, calls to `resolveTypeFieldsStruct` (now renamed to the more correct `resolveStructFieldTypes`) would just throw away the sema that `resolveStructInner` created and create its own. There is no reason to do this, and we fix it to preserve the sema through it all.
My main gripes with this design were that it was incorrectly namespaced, the naming was inconsistent and a bit wrong (`fooAlign` vs `fooAlignment`).
This commit moves all the logic from `PerThread.zig` to use the zcu + tid system that the previous couple commits introduce.
I've organized and merged the functions to be a bit more specific to their own purpose.
- `fieldAlignment` takes a struct or union type, an index, and a Zcu (or the Sema version which takes a Pt), and gives you the alignment of the field at the index.
- `structFieldAlignment` takes the field type itself, and provides the logic to handle special cases, such as externs.
A design goal I had in mind was to avoid using the word 'struct' in the function name, when it worked for things that aren't structs, such as unions.
In a `memoized_call`, store how many backwards braches the call
performs. Add this to `sema.branch_count` when using a memoized call. If
this exceeds the quota, perform a non-memoized call to get a correct
"exceeded X backwards branches" error.
Also, do not memoize calls which do `@setEvalBranchQuota` or similar, as
this affects global state which must apply to the caller.
Change some eval branch quotas so that the compiler itself still builds correctly.
This commit manually changes a file in Aro which is automatically
generated. The sources which generate the file are not in this repo.
Upstream Aro should make the suitable changes on their end before the
next sync of Aro sources into the Zig repo.