Merge pull request #21257 from mlugg/computed-goto-3

compiler: implement labeled switch/continue
This commit is contained in:
Andrew Kelley 2024-09-04 18:31:28 -07:00 committed by GitHub
commit 3929cac154
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
28 changed files with 2690 additions and 824 deletions

View File

@ -1184,14 +1184,7 @@ pub fn lastToken(tree: Ast, node: Node.Index) TokenIndex {
n = extra.sentinel;
},
.@"continue" => {
if (datas[n].lhs != 0) {
return datas[n].lhs + end_offset;
} else {
return main_tokens[n] + end_offset;
}
},
.@"break" => {
.@"continue", .@"break" => {
if (datas[n].rhs != 0) {
n = datas[n].rhs;
} else if (datas[n].lhs != 0) {
@ -1895,6 +1888,25 @@ pub fn taggedUnionEnumTag(tree: Ast, node: Node.Index) full.ContainerDecl {
});
}
pub fn switchFull(tree: Ast, node: Node.Index) full.Switch {
const data = &tree.nodes.items(.data)[node];
const main_token = tree.nodes.items(.main_token)[node];
const switch_token: TokenIndex, const label_token: ?TokenIndex = switch (tree.tokens.items(.tag)[main_token]) {
.identifier => .{ main_token + 2, main_token },
.keyword_switch => .{ main_token, null },
else => unreachable,
};
const extra = tree.extraData(data.rhs, Ast.Node.SubRange);
return .{
.ast = .{
.switch_token = switch_token,
.condition = data.lhs,
.cases = tree.extra_data[extra.start..extra.end],
},
.label_token = label_token,
};
}
pub fn switchCaseOne(tree: Ast, node: Node.Index) full.SwitchCase {
const data = &tree.nodes.items(.data)[node];
const values: *[1]Node.Index = &data.lhs;
@ -2206,6 +2218,21 @@ fn fullContainerDeclComponents(tree: Ast, info: full.ContainerDecl.Components) f
return result;
}
fn fullSwitchComponents(tree: Ast, info: full.Switch.Components) full.Switch {
const token_tags = tree.tokens.items(.tag);
const tok_i = info.switch_token -| 1;
var result: full.Switch = .{
.ast = info,
.label_token = null,
};
if (token_tags[tok_i] == .colon and
token_tags[tok_i -| 1] == .identifier)
{
result.label_token = tok_i - 1;
}
return result;
}
fn fullSwitchCaseComponents(tree: Ast, info: full.SwitchCase.Components, node: Node.Index) full.SwitchCase {
const token_tags = tree.tokens.items(.tag);
const node_tags = tree.nodes.items(.tag);
@ -2477,6 +2504,13 @@ pub fn fullContainerDecl(tree: Ast, buffer: *[2]Ast.Node.Index, node: Node.Index
};
}
pub fn fullSwitch(tree: Ast, node: Node.Index) ?full.Switch {
return switch (tree.nodes.items(.tag)[node]) {
.@"switch", .switch_comma => tree.switchFull(node),
else => null,
};
}
pub fn fullSwitchCase(tree: Ast, node: Node.Index) ?full.SwitchCase {
return switch (tree.nodes.items(.tag)[node]) {
.switch_case_one, .switch_case_inline_one => tree.switchCaseOne(node),
@ -2829,6 +2863,17 @@ pub const full = struct {
};
};
pub const Switch = struct {
ast: Components,
label_token: ?TokenIndex,
pub const Components = struct {
switch_token: TokenIndex,
condition: Node.Index,
cases: []const Node.Index,
};
};
pub const SwitchCase = struct {
inline_token: ?TokenIndex,
/// Points to the first token after the `|`. Will either be an identifier or
@ -3243,6 +3288,7 @@ pub const Node = struct {
/// main_token is the `(`.
async_call_comma,
/// `switch(lhs) {}`. `SubRange[rhs]`.
/// `main_token` is the identifier of a preceding label, if any; otherwise `switch`.
@"switch",
/// Same as switch except there is known to be a trailing comma
/// before the final rbrace
@ -3287,7 +3333,8 @@ pub const Node = struct {
@"suspend",
/// `resume lhs`. rhs is unused.
@"resume",
/// `continue`. lhs is token index of label if any. rhs is unused.
/// `continue :lhs rhs`
/// both lhs and rhs may be omitted.
@"continue",
/// `break :lhs rhs`
/// both lhs and rhs may be omitted.

View File

@ -857,13 +857,10 @@ fn expr(gz: *GenZir, scope: *Scope, ri: ResultInfo, node: Ast.Node.Index) InnerE
const if_full = tree.fullIf(node).?;
no_switch_on_err: {
const error_token = if_full.error_token orelse break :no_switch_on_err;
switch (node_tags[if_full.ast.else_expr]) {
.@"switch", .switch_comma => {},
else => break :no_switch_on_err,
}
const switch_operand = node_datas[if_full.ast.else_expr].lhs;
if (node_tags[switch_operand] != .identifier) break :no_switch_on_err;
if (!mem.eql(u8, tree.tokenSlice(error_token), tree.tokenSlice(main_tokens[switch_operand]))) break :no_switch_on_err;
const full_switch = tree.fullSwitch(if_full.ast.else_expr) orelse break :no_switch_on_err;
if (full_switch.label_token != null) break :no_switch_on_err;
if (node_tags[full_switch.ast.condition] != .identifier) break :no_switch_on_err;
if (!mem.eql(u8, tree.tokenSlice(error_token), tree.tokenSlice(main_tokens[full_switch.ast.condition]))) break :no_switch_on_err;
return switchExprErrUnion(gz, scope, ri.br(), node, .@"if");
}
return ifExpr(gz, scope, ri.br(), node, if_full);
@ -1060,13 +1057,10 @@ fn expr(gz: *GenZir, scope: *Scope, ri: ResultInfo, node: Ast.Node.Index) InnerE
null;
no_switch_on_err: {
const capture_token = payload_token orelse break :no_switch_on_err;
switch (node_tags[node_datas[node].rhs]) {
.@"switch", .switch_comma => {},
else => break :no_switch_on_err,
}
const switch_operand = node_datas[node_datas[node].rhs].lhs;
if (node_tags[switch_operand] != .identifier) break :no_switch_on_err;
if (!mem.eql(u8, tree.tokenSlice(capture_token), tree.tokenSlice(main_tokens[switch_operand]))) break :no_switch_on_err;
const full_switch = tree.fullSwitch(node_datas[node].rhs) orelse break :no_switch_on_err;
if (full_switch.label_token != null) break :no_switch_on_err;
if (node_tags[full_switch.ast.condition] != .identifier) break :no_switch_on_err;
if (!mem.eql(u8, tree.tokenSlice(capture_token), tree.tokenSlice(main_tokens[full_switch.ast.condition]))) break :no_switch_on_err;
return switchExprErrUnion(gz, scope, ri.br(), node, .@"catch");
}
switch (ri.rl) {
@ -1155,7 +1149,7 @@ fn expr(gz: *GenZir, scope: *Scope, ri: ResultInfo, node: Ast.Node.Index) InnerE
.error_set_decl => return errorSetDecl(gz, ri, node),
.array_access => return arrayAccess(gz, scope, ri, node),
.@"comptime" => return comptimeExprAst(gz, scope, ri, node),
.@"switch", .switch_comma => return switchExpr(gz, scope, ri.br(), node),
.@"switch", .switch_comma => return switchExpr(gz, scope, ri.br(), node, tree.fullSwitch(node).?),
.@"nosuspend" => return nosuspendExpr(gz, scope, ri, node),
.@"suspend" => return suspendExpr(gz, scope, node),
@ -2245,6 +2239,11 @@ fn continueExpr(parent_gz: *GenZir, parent_scope: *Scope, node: Ast.Node.Index)
const tree = astgen.tree;
const node_datas = tree.nodes.items(.data);
const break_label = node_datas[node].lhs;
const rhs = node_datas[node].rhs;
if (break_label == 0 and rhs != 0) {
return astgen.failNode(node, "cannot continue with operand without label", .{});
}
// Look for the label in the scope.
var scope = parent_scope;
@ -2269,15 +2268,52 @@ fn continueExpr(parent_gz: *GenZir, parent_scope: *Scope, node: Ast.Node.Index)
if (break_label != 0) blk: {
if (gen_zir.label) |*label| {
if (try astgen.tokenIdentEql(label.token, break_label)) {
const maybe_switch_tag = astgen.instructions.items(.tag)[@intFromEnum(label.block_inst)];
if (rhs != 0) switch (maybe_switch_tag) {
.switch_block, .switch_block_ref => {},
else => return astgen.failNode(node, "cannot continue loop with operand", .{}),
} else switch (maybe_switch_tag) {
.switch_block, .switch_block_ref => return astgen.failNode(node, "cannot continue switch without operand", .{}),
else => {},
}
label.used = true;
label.used_for_continue = true;
break :blk;
}
}
// found continue but either it has a different label, or no label
scope = gen_zir.parent;
continue;
} else if (gen_zir.label) |label| {
// This `continue` is unlabeled. If the gz we've found corresponds to a labeled
// `switch`, ignore it and continue to parent scopes.
switch (astgen.instructions.items(.tag)[@intFromEnum(label.block_inst)]) {
.switch_block, .switch_block_ref => {
scope = gen_zir.parent;
continue;
},
else => {},
}
}
if (rhs != 0) {
// We need to figure out the result info to use.
// The type should match
const operand = try reachableExpr(parent_gz, parent_scope, gen_zir.continue_result_info, rhs, node);
try genDefers(parent_gz, scope, parent_scope, .normal_only);
// As our last action before the continue, "pop" the error trace if needed
if (!gen_zir.is_comptime)
_ = try parent_gz.addRestoreErrRetIndex(.{ .block = continue_block }, .always, node);
_ = try parent_gz.addBreakWithSrcNode(.switch_continue, continue_block, operand, rhs);
return Zir.Inst.Ref.unreachable_value;
}
try genDefers(parent_gz, scope, parent_scope, .normal_only);
const break_tag: Zir.Inst.Tag = if (gen_zir.is_inline)
.break_inline
else
@ -2295,12 +2331,7 @@ fn continueExpr(parent_gz: *GenZir, parent_scope: *Scope, node: Ast.Node.Index)
},
.local_val => scope = scope.cast(Scope.LocalVal).?.parent,
.local_ptr => scope = scope.cast(Scope.LocalPtr).?.parent,
.defer_normal => {
const defer_scope = scope.cast(Scope.Defer).?;
scope = defer_scope.parent;
try parent_gz.addDefer(defer_scope.index, defer_scope.len);
},
.defer_error => scope = scope.cast(Scope.Defer).?.parent,
.defer_normal, .defer_error => scope = scope.cast(Scope.Defer).?.parent,
.namespace => break,
.top => unreachable,
}
@ -2894,6 +2925,7 @@ fn addEnsureResult(gz: *GenZir, maybe_unused_result: Zir.Inst.Ref, statement: As
.panic,
.trap,
.check_comptime_control_flow,
.switch_continue,
=> {
noreturn_src_node = statement;
break :b true;
@ -7569,7 +7601,8 @@ fn switchExpr(
parent_gz: *GenZir,
scope: *Scope,
ri: ResultInfo,
switch_node: Ast.Node.Index,
node: Ast.Node.Index,
switch_full: Ast.full.Switch,
) InnerError!Zir.Inst.Ref {
const astgen = parent_gz.astgen;
const gpa = astgen.gpa;
@ -7578,14 +7611,13 @@ fn switchExpr(
const node_tags = tree.nodes.items(.tag);
const main_tokens = tree.nodes.items(.main_token);
const token_tags = tree.tokens.items(.tag);
const operand_node = node_datas[switch_node].lhs;
const extra = tree.extraData(node_datas[switch_node].rhs, Ast.Node.SubRange);
const case_nodes = tree.extra_data[extra.start..extra.end];
const operand_node = switch_full.ast.condition;
const case_nodes = switch_full.ast.cases;
const need_rl = astgen.nodes_need_rl.contains(switch_node);
const need_rl = astgen.nodes_need_rl.contains(node);
const block_ri: ResultInfo = if (need_rl) ri else .{
.rl = switch (ri.rl) {
.ptr => .{ .ty = (try ri.rl.resultType(parent_gz, switch_node)).? },
.ptr => .{ .ty = (try ri.rl.resultType(parent_gz, node)).? },
.inferred_ptr => .none,
else => ri.rl,
},
@ -7596,11 +7628,16 @@ fn switchExpr(
const LocTag = @typeInfo(ResultInfo.Loc).@"union".tag_type.?;
const need_result_rvalue = @as(LocTag, block_ri.rl) != @as(LocTag, ri.rl);
if (switch_full.label_token) |label_token| {
try astgen.checkLabelRedefinition(scope, label_token);
}
// We perform two passes over the AST. This first pass is to collect information
// for the following variables, make note of the special prong AST node index,
// and bail out with a compile error if there are multiple special prongs present.
var any_payload_is_ref = false;
var any_has_tag_capture = false;
var any_non_inline_capture = false;
var scalar_cases_len: u32 = 0;
var multi_cases_len: u32 = 0;
var inline_cases_len: u32 = 0;
@ -7618,6 +7655,15 @@ fn switchExpr(
if (token_tags[ident + 1] == .comma) {
any_has_tag_capture = true;
}
// If the first capture is ignored, then there is no runtime-known
// capture, as the tag capture must be for an inline prong.
// This check isn't perfect, because for things like enums, the
// first prong *is* comptime-known for inline prongs! But such
// knowledge requires semantic analysis.
if (!mem.eql(u8, tree.tokenSlice(ident), "_")) {
any_non_inline_capture = true;
}
}
// Check for else/`_` prong.
if (case.ast.values.len == 0) {
@ -7637,7 +7683,7 @@ fn switchExpr(
);
} else if (underscore_src) |some_underscore| {
return astgen.failNodeNotes(
switch_node,
node,
"else and '_' prong in switch expression",
.{},
&[_]u32{
@ -7678,7 +7724,7 @@ fn switchExpr(
);
} else if (else_src) |some_else| {
return astgen.failNodeNotes(
switch_node,
node,
"else and '_' prong in switch expression",
.{},
&[_]u32{
@ -7727,6 +7773,12 @@ fn switchExpr(
const raw_operand = try expr(parent_gz, scope, operand_ri, operand_node);
const item_ri: ResultInfo = .{ .rl = .none };
// If this switch is labeled, it may have `continue`s targeting it, and thus we need the operand type
// to provide a result type.
const raw_operand_ty_ref = if (switch_full.label_token != null) t: {
break :t try parent_gz.addUnNode(.typeof, raw_operand, operand_node);
} else undefined;
// This contains the data that goes into the `extra` array for the SwitchBlock/SwitchBlockMulti,
// except the first cases_nodes.len slots are a table that indexes payloads later in the array, with
// the special case index coming first, then scalar_case_len indexes, then multi_cases_len indexes
@ -7748,7 +7800,24 @@ fn switchExpr(
try emitDbgStmtForceCurrentIndex(parent_gz, operand_lc);
// This gets added to the parent block later, after the item expressions.
const switch_tag: Zir.Inst.Tag = if (any_payload_is_ref) .switch_block_ref else .switch_block;
const switch_block = try parent_gz.makeBlockInst(switch_tag, switch_node);
const switch_block = try parent_gz.makeBlockInst(switch_tag, node);
if (switch_full.label_token) |label_token| {
block_scope.break_block = switch_block.toOptional();
block_scope.continue_block = switch_block.toOptional();
// `break_result_info` already set above
block_scope.continue_result_info = .{
.rl = if (any_payload_is_ref)
.{ .ref_coerced_ty = raw_operand_ty_ref }
else
.{ .coerced_ty = raw_operand_ty_ref },
};
block_scope.label = .{
.token = label_token,
.block_inst = switch_block,
};
}
// We re-use this same scope for all cases, including the special prong, if any.
var case_scope = parent_gz.makeSubBlock(&block_scope.base);
@ -7953,6 +8022,11 @@ fn switchExpr(
appendBodyWithFixupsArrayList(astgen, payloads, case_slice);
}
}
if (switch_full.label_token) |label_token| if (!block_scope.label.?.used) {
try astgen.appendErrorTok(label_token, "unused switch label", .{});
};
// Now that the item expressions are generated we can add this.
try parent_gz.instructions.append(gpa, switch_block);
@ -7969,6 +8043,8 @@ fn switchExpr(
.has_else = special_prong == .@"else",
.has_under = special_prong == .under,
.any_has_tag_capture = any_has_tag_capture,
.any_non_inline_capture = any_non_inline_capture,
.has_continue = switch_full.label_token != null and block_scope.label.?.used_for_continue,
.scalar_cases_len = @intCast(scalar_cases_len),
},
});
@ -8005,7 +8081,7 @@ fn switchExpr(
}
if (need_result_rvalue) {
return rvalue(parent_gz, ri, switch_block.toRef(), switch_node);
return rvalue(parent_gz, ri, switch_block.toRef(), node);
} else {
return switch_block.toRef();
}
@ -11861,6 +11937,7 @@ const GenZir = struct {
continue_block: Zir.Inst.OptionalIndex = .none,
/// Only valid when setBreakResultInfo is called.
break_result_info: AstGen.ResultInfo = undefined,
continue_result_info: AstGen.ResultInfo = undefined,
suspend_node: Ast.Node.Index = 0,
nosuspend_node: Ast.Node.Index = 0,
@ -11920,6 +11997,7 @@ const GenZir = struct {
token: Ast.TokenIndex,
block_inst: Zir.Inst.Index,
used: bool = false,
used_for_continue: bool = false,
};
/// Assumes nothing stacked on `gz`.

View File

@ -924,7 +924,6 @@ fn expectContainerField(p: *Parse) !Node.Index {
/// / KEYWORD_errdefer Payload? BlockExprStatement
/// / IfStatement
/// / LabeledStatement
/// / SwitchExpr
/// / VarDeclExprStatement
fn expectStatement(p: *Parse, allow_defer_var: bool) Error!Node.Index {
if (p.eatToken(.keyword_comptime)) |comptime_token| {
@ -995,7 +994,6 @@ fn expectStatement(p: *Parse, allow_defer_var: bool) Error!Node.Index {
.rhs = try p.expectBlockExprStatement(),
},
}),
.keyword_switch => return p.expectSwitchExpr(),
.keyword_if => return p.expectIfStatement(),
.keyword_enum, .keyword_struct, .keyword_union => {
const identifier = p.tok_i + 1;
@ -1238,7 +1236,7 @@ fn expectIfStatement(p: *Parse) !Node.Index {
});
}
/// LabeledStatement <- BlockLabel? (Block / LoopStatement)
/// LabeledStatement <- BlockLabel? (Block / LoopStatement / SwitchExpr)
fn parseLabeledStatement(p: *Parse) !Node.Index {
const label_token = p.parseBlockLabel();
const block = try p.parseBlock();
@ -1247,6 +1245,9 @@ fn parseLabeledStatement(p: *Parse) !Node.Index {
const loop_stmt = try p.parseLoopStatement();
if (loop_stmt != 0) return loop_stmt;
const switch_expr = try p.parseSwitchExpr(label_token != 0);
if (switch_expr != 0) return switch_expr;
if (label_token != 0) {
const after_colon = p.tok_i;
const node = try p.parseTypeExpr();
@ -2072,7 +2073,7 @@ fn expectTypeExpr(p: *Parse) Error!Node.Index {
/// / KEYWORD_break BreakLabel? Expr?
/// / KEYWORD_comptime Expr
/// / KEYWORD_nosuspend Expr
/// / KEYWORD_continue BreakLabel?
/// / KEYWORD_continue BreakLabel? Expr?
/// / KEYWORD_resume Expr
/// / KEYWORD_return Expr?
/// / BlockLabel? LoopExpr
@ -2098,7 +2099,7 @@ fn parsePrimaryExpr(p: *Parse) !Node.Index {
.main_token = p.nextToken(),
.data = .{
.lhs = try p.parseBreakLabel(),
.rhs = undefined,
.rhs = try p.parseExpr(),
},
});
},
@ -2627,7 +2628,6 @@ fn parseSuffixExpr(p: *Parse) !Node.Index {
/// / KEYWORD_anyframe
/// / KEYWORD_unreachable
/// / STRINGLITERAL
/// / SwitchExpr
///
/// ContainerDecl <- (KEYWORD_extern / KEYWORD_packed)? ContainerDeclAuto
///
@ -2647,6 +2647,7 @@ fn parseSuffixExpr(p: *Parse) !Node.Index {
/// LabeledTypeExpr
/// <- BlockLabel Block
/// / BlockLabel? LoopTypeExpr
/// / BlockLabel? SwitchExpr
///
/// LoopTypeExpr <- KEYWORD_inline? (ForTypeExpr / WhileTypeExpr)
fn parsePrimaryTypeExpr(p: *Parse) !Node.Index {
@ -2698,7 +2699,7 @@ fn parsePrimaryTypeExpr(p: *Parse) !Node.Index {
.builtin => return p.parseBuiltinCall(),
.keyword_fn => return p.parseFnProto(),
.keyword_if => return p.parseIf(expectTypeExpr),
.keyword_switch => return p.expectSwitchExpr(),
.keyword_switch => return p.expectSwitchExpr(false),
.keyword_extern,
.keyword_packed,
@ -2753,6 +2754,10 @@ fn parsePrimaryTypeExpr(p: *Parse) !Node.Index {
p.tok_i += 2;
return p.parseWhileTypeExpr();
},
.keyword_switch => {
p.tok_i += 2;
return p.expectSwitchExpr(true);
},
.l_brace => {
p.tok_i += 2;
return p.parseBlock();
@ -3029,8 +3034,17 @@ fn parseWhileTypeExpr(p: *Parse) !Node.Index {
}
/// SwitchExpr <- KEYWORD_switch LPAREN Expr RPAREN LBRACE SwitchProngList RBRACE
fn expectSwitchExpr(p: *Parse) !Node.Index {
fn parseSwitchExpr(p: *Parse, is_labeled: bool) !Node.Index {
const switch_token = p.eatToken(.keyword_switch) orelse return null_node;
return p.expectSwitchSuffix(if (is_labeled) switch_token - 2 else switch_token);
}
fn expectSwitchExpr(p: *Parse, is_labeled: bool) !Node.Index {
const switch_token = p.assertToken(.keyword_switch);
return p.expectSwitchSuffix(if (is_labeled) switch_token - 2 else switch_token);
}
fn expectSwitchSuffix(p: *Parse, main_token: TokenIndex) !Node.Index {
_ = try p.expectToken(.l_paren);
const expr_node = try p.expectExpr();
_ = try p.expectToken(.r_paren);
@ -3041,7 +3055,7 @@ fn expectSwitchExpr(p: *Parse) !Node.Index {
return p.addNode(.{
.tag = if (trailing_comma) .switch_comma else .@"switch",
.main_token = switch_token,
.main_token = main_token,
.data = .{
.lhs = expr_node,
.rhs = try p.addExtra(Node.SubRange{

View File

@ -314,6 +314,9 @@ pub const Inst = struct {
/// break instruction in a block, and the target block is the parent.
/// Uses the `break` union field.
break_inline,
/// Branch from within a switch case to the case specified by the operand.
/// Uses the `break` union field. `block_inst` refers to a `switch_block` or `switch_block_ref`.
switch_continue,
/// Checks that comptime control flow does not happen inside a runtime block.
/// Uses the `un_node` union field.
check_comptime_control_flow,
@ -1293,6 +1296,7 @@ pub const Inst = struct {
.panic,
.trap,
.check_comptime_control_flow,
.switch_continue,
=> true,
};
}
@ -1536,6 +1540,7 @@ pub const Inst = struct {
.break_inline,
.condbr,
.condbr_inline,
.switch_continue,
.compile_error,
.ret_node,
.ret_load,
@ -1621,6 +1626,7 @@ pub const Inst = struct {
.bool_br_or = .pl_node,
.@"break" = .@"break",
.break_inline = .@"break",
.switch_continue = .@"break",
.check_comptime_control_flow = .un_node,
.for_len = .pl_node,
.call = .pl_node,
@ -2316,6 +2322,7 @@ pub const Inst = struct {
},
@"break": struct {
operand: Ref,
/// Index of a `Break` payload.
payload_index: u32,
},
dbg_stmt: LineColumn,
@ -2973,9 +2980,13 @@ pub const Inst = struct {
has_under: bool,
/// If true, at least one prong has an inline tag capture.
any_has_tag_capture: bool,
/// If true, at least one prong has a capture which may not
/// be comptime-known via `inline`.
any_non_inline_capture: bool,
has_continue: bool,
scalar_cases_len: ScalarCasesLen,
pub const ScalarCasesLen = u28;
pub const ScalarCasesLen = u26;
pub fn specialProng(bits: Bits) SpecialProng {
const has_else: u2 = @intFromBool(bits.has_else);
@ -3778,6 +3789,7 @@ fn findDeclsInner(
.bool_br_or,
.@"break",
.break_inline,
.switch_continue,
.check_comptime_control_flow,
.builtin_call,
.cmp_lt,

View File

@ -693,39 +693,27 @@ fn renderExpression(r: *Render, node: Ast.Node.Index, space: Space) Error!void {
return renderToken(r, datas[node].rhs, space);
},
.@"break" => {
.@"break", .@"continue" => {
const main_token = main_tokens[node];
const label_token = datas[node].lhs;
const target = datas[node].rhs;
if (label_token == 0 and target == 0) {
try renderToken(r, main_token, space); // break keyword
try renderToken(r, main_token, space); // break/continue
} else if (label_token == 0 and target != 0) {
try renderToken(r, main_token, .space); // break keyword
try renderToken(r, main_token, .space); // break/continue
try renderExpression(r, target, space);
} else if (label_token != 0 and target == 0) {
try renderToken(r, main_token, .space); // break keyword
try renderToken(r, label_token - 1, .none); // colon
try renderToken(r, main_token, .space); // break/continue
try renderToken(r, label_token - 1, .none); // :
try renderIdentifier(r, label_token, space, .eagerly_unquote); // identifier
} else if (label_token != 0 and target != 0) {
try renderToken(r, main_token, .space); // break keyword
try renderToken(r, label_token - 1, .none); // colon
try renderToken(r, main_token, .space); // break/continue
try renderToken(r, label_token - 1, .none); // :
try renderIdentifier(r, label_token, .space, .eagerly_unquote); // identifier
try renderExpression(r, target, space);
}
},
.@"continue" => {
const main_token = main_tokens[node];
const label = datas[node].lhs;
if (label != 0) {
try renderToken(r, main_token, .space); // continue
try renderToken(r, label - 1, .none); // :
return renderIdentifier(r, label, space, .eagerly_unquote); // label
} else {
return renderToken(r, main_token, space); // continue
}
},
.@"return" => {
if (datas[node].lhs != 0) {
try renderToken(r, main_tokens[node], .space);
@ -845,26 +833,29 @@ fn renderExpression(r: *Render, node: Ast.Node.Index, space: Space) Error!void {
.@"switch",
.switch_comma,
=> {
const switch_token = main_tokens[node];
const condition = datas[node].lhs;
const extra = tree.extraData(datas[node].rhs, Ast.Node.SubRange);
const cases = tree.extra_data[extra.start..extra.end];
const rparen = tree.lastToken(condition) + 1;
const full = tree.switchFull(node);
try renderToken(r, switch_token, .space); // switch keyword
try renderToken(r, switch_token + 1, .none); // lparen
try renderExpression(r, condition, .none); // condition expression
try renderToken(r, rparen, .space); // rparen
if (full.label_token) |label_token| {
try renderIdentifier(r, label_token, .none, .eagerly_unquote); // label
try renderToken(r, label_token + 1, .space); // :
}
const rparen = tree.lastToken(full.ast.condition) + 1;
try renderToken(r, full.ast.switch_token, .space); // switch
try renderToken(r, full.ast.switch_token + 1, .none); // (
try renderExpression(r, full.ast.condition, .none); // condition expression
try renderToken(r, rparen, .space); // )
ais.pushIndentNextLine();
if (cases.len == 0) {
try renderToken(r, rparen + 1, .none); // lbrace
if (full.ast.cases.len == 0) {
try renderToken(r, rparen + 1, .none); // {
} else {
try renderToken(r, rparen + 1, .newline); // lbrace
try renderExpressions(r, cases, .comma);
try renderToken(r, rparen + 1, .newline); // {
try renderExpressions(r, full.ast.cases, .comma);
}
ais.popIndent();
return renderToken(r, tree.lastToken(node), space); // rbrace
return renderToken(r, tree.lastToken(node), space); // }
},
.switch_case_one,

View File

@ -274,13 +274,15 @@ pub const Inst = struct {
/// is to encounter a `br` that targets this `block`. If the `block` type is `noreturn`,
/// then there do not exist any `br` instructions targeting this `block`.
block,
/// A labeled block of code that loops forever. At the end of the body it is implied
/// to repeat; no explicit "repeat" instruction terminates loop bodies.
/// A labeled block of code that loops forever. The body must be `noreturn`: loops
/// occur through an explicit `repeat` instruction pointing back to this one.
/// Result type is always `noreturn`; no instructions in a block follow this one.
/// The body never ends with a `noreturn` instruction, so the "repeat" operation
/// is always statically reachable.
/// There is always at least one `repeat` instruction referencing the loop.
/// Uses the `ty_pl` field. Payload is `Block`.
loop,
/// Sends control flow back to the beginning of a parent `loop` body.
/// Uses the `repeat` field.
repeat,
/// Return from a block with a result.
/// Result type is always noreturn; no instructions in a block follow this one.
/// Uses the `br` field.
@ -427,6 +429,14 @@ pub const Inst = struct {
/// Result type is always noreturn; no instructions in a block follow this one.
/// Uses the `pl_op` field. Operand is the condition. Payload is `SwitchBr`.
switch_br,
/// Switch branch which can dispatch back to itself with a different operand.
/// Result type is always noreturn; no instructions in a block follow this one.
/// Uses the `pl_op` field. Operand is the condition. Payload is `SwitchBr`.
loop_switch_br,
/// Dispatches back to a branch of a parent `loop_switch_br`.
/// Result type is always noreturn; no instructions in a block follow this one.
/// Uses the `br` field. `block_inst` is a `loop_switch_br` instruction.
switch_dispatch,
/// Given an operand which is an error union, splits control flow. In
/// case of error, control flow goes into the block that is part of this
/// instruction, which is guaranteed to end with a return instruction
@ -1045,6 +1055,9 @@ pub const Inst = struct {
block_inst: Index,
operand: Ref,
},
repeat: struct {
loop_inst: Index,
},
pl_op: struct {
operand: Ref,
payload: u32,
@ -1143,10 +1156,12 @@ pub const SwitchBr = struct {
else_body_len: u32,
/// Trailing:
/// * item: Inst.Ref // for each `items_len`.
/// * instruction index for each `body_len`.
/// * item: Inst.Ref // for each `items_len`
/// * { range_start: Inst.Ref, range_end: Inst.Ref } // for each `ranges_len`
/// * body_inst: Inst.Index // for each `body_len`
pub const Case = struct {
items_len: u32,
ranges_len: u32,
body_len: u32,
};
};
@ -1443,9 +1458,12 @@ pub fn typeOfIndex(air: *const Air, inst: Air.Inst.Index, ip: *const InternPool)
=> return datas[@intFromEnum(inst)].ty_op.ty.toType(),
.loop,
.repeat,
.br,
.cond_br,
.switch_br,
.loop_switch_br,
.switch_dispatch,
.ret,
.ret_safe,
.ret_load,
@ -1600,6 +1618,7 @@ pub fn mustLower(air: Air, inst: Air.Inst.Index, ip: *const InternPool) bool {
.arg,
.block,
.loop,
.repeat,
.br,
.trap,
.breakpoint,
@ -1609,6 +1628,8 @@ pub fn mustLower(air: Air, inst: Air.Inst.Index, ip: *const InternPool) bool {
.call_never_inline,
.cond_br,
.switch_br,
.loop_switch_br,
.switch_dispatch,
.@"try",
.try_cold,
.try_ptr,
@ -1862,6 +1883,10 @@ pub const UnwrappedSwitch = struct {
var extra_index = extra.end;
const items: []const Inst.Ref = @ptrCast(it.air.extra[extra_index..][0..extra.data.items_len]);
extra_index += items.len;
// TODO: ptrcast from []const Inst.Ref to []const [2]Inst.Ref when supported
const ranges_ptr: [*]const [2]Inst.Ref = @ptrCast(it.air.extra[extra_index..]);
const ranges: []const [2]Inst.Ref = ranges_ptr[0..extra.data.ranges_len];
extra_index += ranges.len * 2;
const body: []const Inst.Index = @ptrCast(it.air.extra[extra_index..][0..extra.data.body_len]);
extra_index += body.len;
it.extra_index = @intCast(extra_index);
@ -1869,6 +1894,7 @@ pub const UnwrappedSwitch = struct {
return .{
.idx = idx,
.items = items,
.ranges = ranges,
.body = body,
};
}
@ -1881,6 +1907,7 @@ pub const UnwrappedSwitch = struct {
pub const Case = struct {
idx: u32,
items: []const Inst.Ref,
ranges: []const [2]Inst.Ref,
body: []const Inst.Index,
};
};
@ -1888,7 +1915,10 @@ pub const UnwrappedSwitch = struct {
pub fn unwrapSwitch(air: *const Air, switch_inst: Inst.Index) UnwrappedSwitch {
const inst = air.instructions.get(@intFromEnum(switch_inst));
assert(inst.tag == .switch_br);
switch (inst.tag) {
.switch_br, .loop_switch_br => {},
else => unreachable, // assertion failure
}
const pl_op = inst.data.pl_op;
const extra = air.extraData(SwitchBr, pl_op.payload);
const hint_bag_count = std.math.divCeil(usize, extra.data.cases_len + 1, 10) catch unreachable;

View File

@ -222,7 +222,7 @@ fn checkBody(air: Air, body: []const Air.Inst.Index, zcu: *Zcu) bool {
if (!checkRef(data.un_op, zcu)) return false;
},
.br => {
.br, .switch_dispatch => {
if (!checkRef(data.br.operand, zcu)) return false;
},
@ -380,12 +380,16 @@ fn checkBody(air: Air, body: []const Air.Inst.Index, zcu: *Zcu) bool {
)) return false;
},
.switch_br => {
.switch_br, .loop_switch_br => {
const switch_br = air.unwrapSwitch(inst);
if (!checkRef(switch_br.operand, zcu)) return false;
var it = switch_br.iterateCases();
while (it.next()) |case| {
for (case.items) |item| if (!checkRef(item, zcu)) return false;
for (case.ranges) |range| {
if (!checkRef(range[0], zcu)) return false;
if (!checkRef(range[1], zcu)) return false;
}
if (!checkBody(air, case.body, zcu)) return false;
}
if (!checkBody(air, it.elseBody(), zcu)) return false;
@ -416,6 +420,7 @@ fn checkBody(air: Air, body: []const Air.Inst.Index, zcu: *Zcu) bool {
.dbg_stmt,
.err_return_trace,
.save_err_return_trace_index,
.repeat,
=> {},
}
}

View File

@ -31,6 +31,7 @@ tomb_bits: []usize,
/// * `try`, `try_ptr` - points to a `CondBr` in `extra` at this index. The error path (the block
/// in the instruction) is considered the "else" path, and the rest of the block the "then".
/// * `switch_br` - points to a `SwitchBr` in `extra` at this index.
/// * `loop_switch_br` - points to a `SwitchBr` in `extra` at this index.
/// * `block` - points to a `Block` in `extra` at this index.
/// * `asm`, `call`, `aggregate_init` - the value is a set of bits which are the extra tomb
/// bits of operands.
@ -68,9 +69,10 @@ pub const Block = struct {
/// Liveness analysis runs in several passes. Each pass iterates backwards over instructions in
/// bodies, and recurses into bodies.
const LivenessPass = enum {
/// In this pass, we perform some basic analysis of loops to gain information the main pass
/// needs. In particular, for every `loop`, we track the following information:
/// * Every block which the loop body contains a `br` to.
/// In this pass, we perform some basic analysis of loops to gain information the main pass needs.
/// In particular, for every `loop` and `loop_switch_br`, we track the following information:
/// * Every outer block which the loop body contains a `br` to.
/// * Every outer loop which the loop body contains a `repeat` to.
/// * Every operand referenced within the loop body but created outside the loop.
/// This gives the main analysis pass enough information to determine the full set of
/// instructions which need to be alive when a loop repeats. This data is TEMPORARILY stored in
@ -89,7 +91,9 @@ fn LivenessPassData(comptime pass: LivenessPass) type {
return switch (pass) {
.loop_analysis => struct {
/// The set of blocks which are exited with a `br` instruction at some point within this
/// body and which we are currently within.
/// body and which we are currently within. Also includes `loop`s which are the target
/// of a `repeat` instruction, and `loop_switch_br`s which are the target of a
/// `switch_dispatch` instruction.
breaks: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .{},
/// The set of operands for which we have seen at least one usage but not their birth.
@ -102,7 +106,7 @@ fn LivenessPassData(comptime pass: LivenessPass) type {
},
.main_analysis => struct {
/// Every `block` currently under analysis.
/// Every `block` and `loop` currently under analysis.
block_scopes: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockScope) = .{},
/// The set of instructions currently alive in the current control
@ -114,7 +118,8 @@ fn LivenessPassData(comptime pass: LivenessPass) type {
old_extra: std.ArrayListUnmanaged(u32) = .{},
const BlockScope = struct {
/// The set of instructions which are alive upon a `br` to this block.
/// If this is a `block`, these instructions are alive upon a `br` to this block.
/// If this is a `loop`, these instructions are alive upon a `repeat` to this block.
live_set: std.AutoHashMapUnmanaged(Air.Inst.Index, void),
};
@ -326,6 +331,8 @@ pub fn categorizeOperand(
.ret_ptr,
.trap,
.breakpoint,
.repeat,
.switch_dispatch,
.dbg_stmt,
.unreach,
.ret_addr,
@ -658,21 +665,17 @@ pub fn categorizeOperand(
return .complex;
},
.@"try", .try_cold => {
return .complex;
},
.try_ptr, .try_ptr_cold => {
return .complex;
},
.loop => {
return .complex;
},
.cond_br => {
return .complex;
},
.switch_br => {
return .complex;
},
.@"try",
.try_cold,
.try_ptr,
.try_ptr_cold,
.loop,
.cond_br,
.switch_br,
.loop_switch_br,
=> return .complex,
.wasm_memory_grow => {
const pl_op = air_datas[@intFromEnum(inst)].pl_op;
if (pl_op.operand == operand_ref) return matchOperandSmallIndex(l, inst, 0, .none);
@ -1201,6 +1204,8 @@ fn analyzeInst(
},
.br => return analyzeInstBr(a, pass, data, inst),
.repeat => return analyzeInstRepeat(a, pass, data, inst),
.switch_dispatch => return analyzeInstSwitchDispatch(a, pass, data, inst),
.assembly => {
const extra = a.air.extraData(Air.Asm, inst_datas[@intFromEnum(inst)].ty_pl.payload);
@ -1257,7 +1262,8 @@ fn analyzeInst(
.@"try", .try_cold => return analyzeInstCondBr(a, pass, data, inst, .@"try"),
.try_ptr, .try_ptr_cold => return analyzeInstCondBr(a, pass, data, inst, .try_ptr),
.cond_br => return analyzeInstCondBr(a, pass, data, inst, .cond_br),
.switch_br => return analyzeInstSwitchBr(a, pass, data, inst),
.switch_br => return analyzeInstSwitchBr(a, pass, data, inst, false),
.loop_switch_br => return analyzeInstSwitchBr(a, pass, data, inst, true),
.wasm_memory_grow => {
const pl_op = inst_datas[@intFromEnum(inst)].pl_op;
@ -1380,6 +1386,62 @@ fn analyzeInstBr(
return analyzeOperands(a, pass, data, inst, .{ br.operand, .none, .none });
}
fn analyzeInstRepeat(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
const inst_datas = a.air.instructions.items(.data);
const repeat = inst_datas[@intFromEnum(inst)].repeat;
const gpa = a.gpa;
switch (pass) {
.loop_analysis => {
try data.breaks.put(gpa, repeat.loop_inst, {});
},
.main_analysis => {
const block_scope = data.block_scopes.get(repeat.loop_inst).?; // we should always be repeating an enclosing loop
const new_live_set = try block_scope.live_set.clone(gpa);
data.live_set.deinit(gpa);
data.live_set = new_live_set;
},
}
return analyzeOperands(a, pass, data, inst, .{ .none, .none, .none });
}
fn analyzeInstSwitchDispatch(
a: *Analysis,
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
) !void {
// This happens to be identical to `analyzeInstBr`, but is separated anyway for clarity.
const inst_datas = a.air.instructions.items(.data);
const br = inst_datas[@intFromEnum(inst)].br;
const gpa = a.gpa;
switch (pass) {
.loop_analysis => {
try data.breaks.put(gpa, br.block_inst, {});
},
.main_analysis => {
const block_scope = data.block_scopes.get(br.block_inst).?; // we should always be repeating an enclosing loop
const new_live_set = try block_scope.live_set.clone(gpa);
data.live_set.deinit(gpa);
data.live_set = new_live_set;
},
}
return analyzeOperands(a, pass, data, inst, .{ br.operand, .none, .none });
}
fn analyzeInstBlock(
a: *Analysis,
comptime pass: LivenessPass,
@ -1402,8 +1464,10 @@ fn analyzeInstBlock(
.main_analysis => {
log.debug("[{}] %{}: block live set is {}", .{ pass, inst, fmtInstSet(&data.live_set) });
// We can move the live set because the body should have a noreturn
// instruction which overrides the set.
try data.block_scopes.put(gpa, inst, .{
.live_set = try data.live_set.clone(gpa),
.live_set = data.live_set.move(),
});
defer {
log.debug("[{}] %{}: popped block scope", .{ pass, inst });
@ -1448,6 +1512,102 @@ fn analyzeInstBlock(
}
}
fn writeLoopInfo(
a: *Analysis,
data: *LivenessPassData(.loop_analysis),
inst: Air.Inst.Index,
old_breaks: std.AutoHashMapUnmanaged(Air.Inst.Index, void),
old_live: std.AutoHashMapUnmanaged(Air.Inst.Index, void),
) !void {
const gpa = a.gpa;
// `loop`s are guaranteed to have at least one matching `repeat`.
// Similarly, `loop_switch_br`s have a matching `switch_dispatch`.
// However, we no longer care about repeats of this loop for resolving
// which operands must live within it.
assert(data.breaks.remove(inst));
const extra_index: u32 = @intCast(a.extra.items.len);
const num_breaks = data.breaks.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_breaks);
a.extra.appendAssumeCapacity(num_breaks);
var it = data.breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
a.extra.appendAssumeCapacity(@intFromEnum(block_inst));
}
log.debug("[{}] %{}: includes breaks to {}", .{ LivenessPass.loop_analysis, inst, fmtInstSet(&data.breaks) });
// Now we put the live operands from the loop body in too
const num_live = data.live_set.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_live);
a.extra.appendAssumeCapacity(num_live);
it = data.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
a.extra.appendAssumeCapacity(@intFromEnum(alive));
}
log.debug("[{}] %{}: maintain liveness of {}", .{ LivenessPass.loop_analysis, inst, fmtInstSet(&data.live_set) });
try a.special.put(gpa, inst, extra_index);
// Add back operands which were previously alive
it = old_live.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
// And the same for breaks
it = old_breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
try data.breaks.put(gpa, block_inst, {});
}
}
/// When analyzing a loop in the main pass, sets up `data.live_set` to be the set
/// of operands known to be alive when the loop repeats.
fn resolveLoopLiveSet(
a: *Analysis,
data: *LivenessPassData(.main_analysis),
inst: Air.Inst.Index,
) !void {
const gpa = a.gpa;
const extra_idx = a.special.fetchRemove(inst).?.value;
const num_breaks = data.old_extra.items[extra_idx];
const breaks: []const Air.Inst.Index = @ptrCast(data.old_extra.items[extra_idx + 1 ..][0..num_breaks]);
const num_loop_live = data.old_extra.items[extra_idx + num_breaks + 1];
const loop_live: []const Air.Inst.Index = @ptrCast(data.old_extra.items[extra_idx + num_breaks + 2 ..][0..num_loop_live]);
// This is necessarily not in the same control flow branch, because loops are noreturn
data.live_set.clearRetainingCapacity();
try data.live_set.ensureUnusedCapacity(gpa, @intCast(loop_live.len));
for (loop_live) |alive| data.live_set.putAssumeCapacity(alive, {});
log.debug("[{}] %{}: block live set is {}", .{ LivenessPass.main_analysis, inst, fmtInstSet(&data.live_set) });
for (breaks) |block_inst| {
// We might break to this block, so include every operand that the block needs alive
const block_scope = data.block_scopes.get(block_inst).?;
var it = block_scope.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
}
log.debug("[{}] %{}: loop live set is {}", .{ LivenessPass.main_analysis, inst, fmtInstSet(&data.live_set) });
}
fn analyzeInstLoop(
a: *Analysis,
comptime pass: LivenessPass,
@ -1471,78 +1631,22 @@ fn analyzeInstLoop(
try analyzeBody(a, pass, data, body);
const num_breaks = data.breaks.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_breaks);
const extra_index = @as(u32, @intCast(a.extra.items.len));
a.extra.appendAssumeCapacity(num_breaks);
var it = data.breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
a.extra.appendAssumeCapacity(@intFromEnum(block_inst));
}
log.debug("[{}] %{}: includes breaks to {}", .{ pass, inst, fmtInstSet(&data.breaks) });
// Now we put the live operands from the loop body in too
const num_live = data.live_set.count();
try a.extra.ensureUnusedCapacity(gpa, 1 + num_live);
a.extra.appendAssumeCapacity(num_live);
it = data.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
a.extra.appendAssumeCapacity(@intFromEnum(alive));
}
log.debug("[{}] %{}: maintain liveness of {}", .{ pass, inst, fmtInstSet(&data.live_set) });
try a.special.put(gpa, inst, extra_index);
// Add back operands which were previously alive
it = old_live.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
// And the same for breaks
it = old_breaks.keyIterator();
while (it.next()) |key| {
const block_inst = key.*;
try data.breaks.put(gpa, block_inst, {});
}
try writeLoopInfo(a, data, inst, old_breaks, old_live);
},
.main_analysis => {
const extra_idx = a.special.fetchRemove(inst).?.value; // remove because this data does not exist after analysis
try resolveLoopLiveSet(a, data, inst);
const num_breaks = data.old_extra.items[extra_idx];
const breaks: []const Air.Inst.Index = @ptrCast(data.old_extra.items[extra_idx + 1 ..][0..num_breaks]);
const num_loop_live = data.old_extra.items[extra_idx + num_breaks + 1];
const loop_live: []const Air.Inst.Index = @ptrCast(data.old_extra.items[extra_idx + num_breaks + 2 ..][0..num_loop_live]);
// This is necessarily not in the same control flow branch, because loops are noreturn
data.live_set.clearRetainingCapacity();
try data.live_set.ensureUnusedCapacity(gpa, @intCast(loop_live.len));
for (loop_live) |alive| {
data.live_set.putAssumeCapacity(alive, {});
// Now, `data.live_set` is the operands which must be alive when the loop repeats.
// Move them into a block scope for corresponding `repeat` instructions to notice.
try data.block_scopes.putNoClobber(gpa, inst, .{
.live_set = data.live_set.move(),
});
defer {
log.debug("[{}] %{}: popped loop block scop", .{ pass, inst });
var scope = data.block_scopes.fetchRemove(inst).?.value;
scope.live_set.deinit(gpa);
}
log.debug("[{}] %{}: block live set is {}", .{ pass, inst, fmtInstSet(&data.live_set) });
for (breaks) |block_inst| {
// We might break to this block, so include every operand that the block needs alive
const block_scope = data.block_scopes.get(block_inst).?;
var it = block_scope.live_set.keyIterator();
while (it.next()) |key| {
const alive = key.*;
try data.live_set.put(gpa, alive, {});
}
}
try analyzeBody(a, pass, data, body);
},
}
@ -1670,6 +1774,7 @@ fn analyzeInstSwitchBr(
comptime pass: LivenessPass,
data: *LivenessPassData(pass),
inst: Air.Inst.Index,
is_dispatch_loop: bool,
) !void {
const inst_datas = a.air.instructions.items(.data);
const pl_op = inst_datas[@intFromEnum(inst)].pl_op;
@ -1680,6 +1785,17 @@ fn analyzeInstSwitchBr(
switch (pass) {
.loop_analysis => {
var old_breaks: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .{};
defer old_breaks.deinit(gpa);
var old_live: std.AutoHashMapUnmanaged(Air.Inst.Index, void) = .{};
defer old_live.deinit(gpa);
if (is_dispatch_loop) {
old_breaks = data.breaks.move();
old_live = data.live_set.move();
}
var it = switch_br.iterateCases();
while (it.next()) |case| {
try analyzeBody(a, pass, data, case.body);
@ -1688,9 +1804,24 @@ fn analyzeInstSwitchBr(
const else_body = it.elseBody();
try analyzeBody(a, pass, data, else_body);
}
if (is_dispatch_loop) {
try writeLoopInfo(a, data, inst, old_breaks, old_live);
}
},
.main_analysis => {
if (is_dispatch_loop) {
try resolveLoopLiveSet(a, data, inst);
try data.block_scopes.putNoClobber(gpa, inst, .{
.live_set = data.live_set.move(),
});
}
defer if (is_dispatch_loop) {
log.debug("[{}] %{}: popped loop block scop", .{ pass, inst });
var scope = data.block_scopes.fetchRemove(inst).?.value;
scope.live_set.deinit(gpa);
};
// This is, all in all, just a messier version of the `cond_br` logic. If you're trying
// to understand it, I encourage looking at `analyzeInstCondBr` first.

View File

@ -1,28 +1,38 @@
//! Verifies that liveness information is valid.
//! Verifies that Liveness information is valid.
gpa: std.mem.Allocator,
air: Air,
liveness: Liveness,
live: LiveMap = .{},
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, LiveMap) = .{},
loops: std.AutoHashMapUnmanaged(Air.Inst.Index, LiveMap) = .{},
intern_pool: *const InternPool,
pub const Error = error{ LivenessInvalid, OutOfMemory };
pub fn deinit(self: *Verify) void {
self.live.deinit(self.gpa);
var block_it = self.blocks.valueIterator();
while (block_it.next()) |block| block.deinit(self.gpa);
self.blocks.deinit(self.gpa);
{
var it = self.blocks.valueIterator();
while (it.next()) |block| block.deinit(self.gpa);
self.blocks.deinit(self.gpa);
}
{
var it = self.loops.valueIterator();
while (it.next()) |block| block.deinit(self.gpa);
self.loops.deinit(self.gpa);
}
self.* = undefined;
}
pub fn verify(self: *Verify) Error!void {
self.live.clearRetainingCapacity();
self.blocks.clearRetainingCapacity();
self.loops.clearRetainingCapacity();
try self.verifyBody(self.air.getMainBody());
// We don't care about `self.live` now, because the loop body was noreturn - everything being dead was checked on `ret` etc
assert(self.blocks.count() == 0);
assert(self.loops.count() == 0);
}
const LiveMap = std.AutoHashMapUnmanaged(Air.Inst.Index, void);
@ -430,6 +440,23 @@ fn verifyBody(self: *Verify, body: []const Air.Inst.Index) Error!void {
}
try self.verifyInst(inst);
},
.repeat => {
const repeat = data[@intFromEnum(inst)].repeat;
const expected_live = self.loops.get(repeat.loop_inst) orelse
return invalid("%{}: loop %{} not in scope", .{ @intFromEnum(inst), @intFromEnum(repeat.loop_inst) });
try self.verifyMatchingLiveness(repeat.loop_inst, expected_live);
},
.switch_dispatch => {
const br = data[@intFromEnum(inst)].br;
try self.verifyOperand(inst, br.operand, self.liveness.operandDies(inst, 0));
const expected_live = self.loops.get(br.block_inst) orelse
return invalid("%{}: loop %{} not in scope", .{ @intFromEnum(inst), @intFromEnum(br.block_inst) });
try self.verifyMatchingLiveness(br.block_inst, expected_live);
},
.block, .dbg_inline_block => |tag| {
const ty_pl = data[@intFromEnum(inst)].ty_pl;
const block_ty = ty_pl.ty.toType();
@ -475,14 +502,17 @@ fn verifyBody(self: *Verify, body: []const Air.Inst.Index) Error!void {
const extra = self.air.extraData(Air.Block, ty_pl.payload);
const loop_body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
var live = try self.live.clone(self.gpa);
defer live.deinit(self.gpa);
// The same stuff should be alive after the loop as before it.
const gop = try self.loops.getOrPut(self.gpa, inst);
if (gop.found_existing) return invalid("%{}: loop already exists", .{@intFromEnum(inst)});
defer {
var live = self.loops.fetchRemove(inst).?;
live.value.deinit(self.gpa);
}
gop.value_ptr.* = try self.live.clone(self.gpa);
try self.verifyBody(loop_body);
// The same stuff should be alive after the loop as before it
try self.verifyMatchingLiveness(inst, live);
try self.verifyInstOperands(inst, .{ .none, .none, .none });
},
.cond_br => {
@ -508,7 +538,7 @@ fn verifyBody(self: *Verify, body: []const Air.Inst.Index) Error!void {
try self.verifyInst(inst);
},
.switch_br => {
.switch_br, .loop_switch_br => {
const switch_br = self.air.unwrapSwitch(inst);
const switch_br_liveness = try self.liveness.getSwitchBr(
self.gpa,
@ -519,13 +549,22 @@ fn verifyBody(self: *Verify, body: []const Air.Inst.Index) Error!void {
try self.verifyOperand(inst, switch_br.operand, self.liveness.operandDies(inst, 0));
var live = self.live.move();
defer live.deinit(self.gpa);
// Excluding the operand (which we just handled), the same stuff should be alive
// after the loop as before it.
{
const gop = try self.loops.getOrPut(self.gpa, inst);
if (gop.found_existing) return invalid("%{}: loop already exists", .{@intFromEnum(inst)});
gop.value_ptr.* = self.live.move();
}
defer {
var live = self.loops.fetchRemove(inst).?;
live.value.deinit(self.gpa);
}
var it = switch_br.iterateCases();
while (it.next()) |case| {
self.live.deinit(self.gpa);
self.live = try live.clone(self.gpa);
self.live = try self.loops.get(inst).?.clone(self.gpa);
for (switch_br_liveness.deaths[case.idx]) |death| try self.verifyDeath(inst, death);
try self.verifyBody(case.body);
@ -534,7 +573,7 @@ fn verifyBody(self: *Verify, body: []const Air.Inst.Index) Error!void {
const else_body = it.elseBody();
if (else_body.len > 0) {
self.live.deinit(self.gpa);
self.live = try live.clone(self.gpa);
self.live = try self.loops.get(inst).?.clone(self.gpa);
for (switch_br_liveness.deaths[switch_br.cases_len]) |death| try self.verifyDeath(inst, death);
try self.verifyBody(else_body);
}

File diff suppressed because it is too large Load Diff

View File

@ -292,6 +292,7 @@ pub fn getUnsignedIntInner(
.none => 0,
else => |payload| Value.fromInterned(payload).getUnsignedIntInner(strat, zcu, tid),
},
.enum_tag => |enum_tag| return Value.fromInterned(enum_tag.int).getUnsignedIntInner(strat, zcu, tid),
else => null,
},
};

View File

@ -734,6 +734,8 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.bitcast => try self.airBitCast(inst),
.block => try self.airBlock(inst),
.br => try self.airBr(inst),
.repeat => return self.fail("TODO implement `repeat`", .{}),
.switch_dispatch => return self.fail("TODO implement `switch_dispatch`", .{}),
.trap => try self.airTrap(),
.breakpoint => try self.airBreakpoint(),
.ret_addr => try self.airRetAddr(inst),
@ -824,6 +826,7 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.field_parent_ptr => try self.airFieldParentPtr(inst),
.switch_br => try self.airSwitch(inst),
.loop_switch_br => return self.fail("TODO implement `loop_switch_br`", .{}),
.slice_ptr => try self.airSlicePtr(inst),
.slice_len => try self.airSliceLen(inst),
@ -5105,6 +5108,8 @@ fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
var it = switch_br.iterateCases();
while (it.next()) |case| {
if (case.ranges.len > 0) return self.fail("TODO: switch with ranges", .{});
// For every item, we compare it to condition and branch into
// the prong if they are equal. After we compared to all
// items, we branch into the next prong (or if no other prongs

View File

@ -721,6 +721,8 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.bitcast => try self.airBitCast(inst),
.block => try self.airBlock(inst),
.br => try self.airBr(inst),
.repeat => return self.fail("TODO implement `repeat`", .{}),
.switch_dispatch => return self.fail("TODO implement `switch_dispatch`", .{}),
.trap => try self.airTrap(),
.breakpoint => try self.airBreakpoint(),
.ret_addr => try self.airRetAddr(inst),
@ -811,6 +813,7 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.field_parent_ptr => try self.airFieldParentPtr(inst),
.switch_br => try self.airSwitch(inst),
.loop_switch_br => return self.fail("TODO implement `loop_switch_br`", .{}),
.slice_ptr => try self.airSlicePtr(inst),
.slice_len => try self.airSliceLen(inst),
@ -5053,6 +5056,7 @@ fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
var it = switch_br.iterateCases();
while (it.next()) |case| {
if (case.ranges.len > 0) return self.fail("TODO: switch with ranges", .{});
// For every item, we compare it to condition and branch into
// the prong if they are equal. After we compared to all
// items, we branch into the next prong (or if no other prongs

View File

@ -108,6 +108,13 @@ frame_allocs: std.MultiArrayList(FrameAlloc) = .{},
free_frame_indices: std.AutoArrayHashMapUnmanaged(FrameIndex, void) = .{},
frame_locs: std.MultiArrayList(Mir.FrameLoc) = .{},
loops: std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
/// The state to restore before branching.
state: State,
/// The branch target.
jmp_target: Mir.Inst.Index,
}) = .{},
/// Debug field, used to find bugs in the compiler.
air_bookkeeping: @TypeOf(air_bookkeeping_init) = air_bookkeeping_init,
@ -225,11 +232,12 @@ const MCValue = union(enum) {
.register,
.register_pair,
.register_offset,
.load_frame,
.load_symbol,
.load_tlv,
.indirect,
=> true,
.load_frame => |frame_addr| !frame_addr.index.isNamed(),
};
}
@ -797,6 +805,7 @@ pub fn generate(
function.frame_allocs.deinit(gpa);
function.free_frame_indices.deinit(gpa);
function.frame_locs.deinit(gpa);
function.loops.deinit(gpa);
var block_it = function.blocks.valueIterator();
while (block_it.next()) |block| block.deinit(gpa);
function.blocks.deinit(gpa);
@ -1579,6 +1588,8 @@ fn genBody(func: *Func, body: []const Air.Inst.Index) InnerError!void {
.bitcast => try func.airBitCast(inst),
.block => try func.airBlock(inst),
.br => try func.airBr(inst),
.repeat => try func.airRepeat(inst),
.switch_dispatch => try func.airSwitchDispatch(inst),
.trap => try func.airTrap(),
.breakpoint => try func.airBreakpoint(),
.ret_addr => try func.airRetAddr(inst),
@ -1668,6 +1679,7 @@ fn genBody(func: *Func, body: []const Air.Inst.Index) InnerError!void {
.field_parent_ptr => try func.airFieldParentPtr(inst),
.switch_br => try func.airSwitchBr(inst),
.loop_switch_br => try func.airLoopSwitchBr(inst),
.ptr_slice_len_ptr => try func.airPtrSliceLenPtr(inst),
.ptr_slice_ptr_ptr => try func.airPtrSlicePtrPtr(inst),
@ -5638,15 +5650,13 @@ fn airLoop(func: *Func, inst: Air.Inst.Index) !void {
func.scope_generation += 1;
const state = try func.saveState();
const jmp_target: Mir.Inst.Index = @intCast(func.mir_instructions.len);
try func.genBody(body);
try func.restoreState(state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = true,
try func.loops.putNoClobber(func.gpa, inst, .{
.state = state,
.jmp_target = @intCast(func.mir_instructions.len),
});
_ = try func.jump(jmp_target);
defer assert(func.loops.remove(inst));
try func.genBody(body);
func.finishAirBookkeeping();
}
@ -5701,12 +5711,7 @@ fn lowerBlock(func: *Func, inst: Air.Inst.Index, body: []const Air.Inst.Index) !
fn airSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
const switch_br = func.air.unwrapSwitch(inst);
const liveness = try func.liveness.getSwitchBr(func.gpa, inst, switch_br.cases_len + 1);
defer func.gpa.free(liveness.deaths);
const condition = try func.resolveInst(switch_br.operand);
const condition_ty = func.typeOf(switch_br.operand);
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
@ -5715,15 +5720,31 @@ fn airSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
if (switch_br.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
try func.lowerSwitchBr(inst, switch_br, condition);
// We already took care of pl_op.operand earlier, so there's nothing left to do
func.finishAirBookkeeping();
}
fn lowerSwitchBr(
func: *Func,
inst: Air.Inst.Index,
switch_br: Air.UnwrappedSwitch,
condition: MCValue,
) !void {
const condition_ty = func.typeOf(switch_br.operand);
const liveness = try func.liveness.getSwitchBr(func.gpa, inst, switch_br.cases_len + 1);
defer func.gpa.free(liveness.deaths);
func.scope_generation += 1;
const state = try func.saveState();
var it = switch_br.iterateCases();
while (it.next()) |case| {
var relocs = try func.gpa.alloc(Mir.Inst.Index, case.items.len);
var relocs = try func.gpa.alloc(Mir.Inst.Index, case.items.len + case.ranges.len);
defer func.gpa.free(relocs);
for (case.items, relocs, 0..) |item, *reloc, i| {
for (case.items, relocs[0..case.items.len]) |item, *reloc| {
const item_mcv = try func.resolveInst(item);
const cond_lock = switch (condition) {
@ -5744,22 +5765,52 @@ fn airSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
cmp_reg,
);
if (!(i < relocs.len - 1)) {
_ = try func.addInst(.{
.tag = .pseudo_not,
.data = .{ .rr = .{
.rd = cmp_reg,
.rs = cmp_reg,
} },
});
}
reloc.* = try func.condBr(condition_ty, .{ .register = cmp_reg });
}
for (case.ranges, relocs[case.items.len..]) |range, *reloc| {
const min_mcv = try func.resolveInst(range[0]);
const max_mcv = try func.resolveInst(range[1]);
const cond_lock = switch (condition) {
.register => func.register_manager.lockRegAssumeUnused(condition.register),
else => null,
};
defer if (cond_lock) |lock| func.register_manager.unlockReg(lock);
const temp_cmp_reg, const temp_cmp_lock = try func.allocReg(.int);
defer func.register_manager.unlockReg(temp_cmp_lock);
// is `condition` less than `min`? is "true", we've failed
try func.genBinOp(
.cmp_gte,
condition,
condition_ty,
min_mcv,
condition_ty,
temp_cmp_reg,
);
// if the compare was true, we will jump to the fail case and fall through
// to the next checks
const lt_fail_reloc = try func.condBr(condition_ty, .{ .register = temp_cmp_reg });
try func.genBinOp(
.cmp_gt,
condition,
condition_ty,
max_mcv,
condition_ty,
temp_cmp_reg,
);
reloc.* = try func.condBr(condition_ty, .{ .register = temp_cmp_reg });
func.performReloc(lt_fail_reloc);
}
const skip_case_reloc = try func.jump(undefined);
for (liveness.deaths[case.idx]) |operand| try func.processDeath(operand);
for (relocs[0 .. relocs.len - 1]) |reloc| func.performReloc(reloc);
for (relocs) |reloc| func.performReloc(reloc);
try func.genBody(case.body);
try func.restoreState(state, &.{}, .{
.emit_instructions = false,
@ -5768,7 +5819,7 @@ fn airSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
.close_scope = true,
});
func.performReloc(relocs[relocs.len - 1]);
func.performReloc(skip_case_reloc);
}
if (switch_br.else_body_len > 0) {
@ -5785,8 +5836,92 @@ fn airSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
.close_scope = true,
});
}
}
fn airLoopSwitchBr(func: *Func, inst: Air.Inst.Index) !void {
const switch_br = func.air.unwrapSwitch(inst);
const condition = try func.resolveInst(switch_br.operand);
const mat_cond = if (condition.isMutable() and
func.reuseOperand(inst, switch_br.operand, 0, condition))
condition
else mat_cond: {
const ty = func.typeOf(switch_br.operand);
const mat_cond = try func.allocRegOrMem(ty, inst, true);
try func.genCopy(ty, mat_cond, condition);
break :mat_cond mat_cond;
};
func.inst_tracking.putAssumeCapacityNoClobber(inst, InstTracking.init(mat_cond));
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (func.liveness.operandDies(inst, 0)) {
if (switch_br.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
func.scope_generation += 1;
const state = try func.saveState();
try func.loops.putNoClobber(func.gpa, inst, .{
.state = state,
.jmp_target = @intCast(func.mir_instructions.len),
});
defer assert(func.loops.remove(inst));
// Stop tracking block result without forgetting tracking info
try func.freeValue(mat_cond);
try func.lowerSwitchBr(inst, switch_br, mat_cond);
try func.processDeath(inst);
func.finishAirBookkeeping();
}
fn airSwitchDispatch(func: *Func, inst: Air.Inst.Index) !void {
const br = func.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block_ty = func.typeOfIndex(br.block_inst);
const block_tracking = func.inst_tracking.getPtr(br.block_inst).?;
const loop_data = func.loops.getPtr(br.block_inst).?;
done: {
try func.getValue(block_tracking.short, null);
const src_mcv = try func.resolveInst(br.operand);
if (func.reuseOperandAdvanced(inst, br.operand, 0, src_mcv, br.block_inst)) {
try func.getValue(block_tracking.short, br.block_inst);
// .long = .none to avoid merging operand and block result stack frames.
const current_tracking: InstTracking = .{ .long = .none, .short = src_mcv };
try current_tracking.materializeUnsafe(func, br.block_inst, block_tracking.*);
for (current_tracking.getRegs()) |src_reg| func.register_manager.freeReg(src_reg);
break :done;
}
try func.getValue(block_tracking.short, br.block_inst);
const dst_mcv = block_tracking.short;
try func.genCopy(block_ty, dst_mcv, try func.resolveInst(br.operand));
break :done;
}
// Process operand death so that it is properly accounted for in the State below.
if (func.liveness.operandDies(inst, 0)) {
if (br.operand.toIndex()) |op_inst| try func.processDeath(op_inst);
}
try func.restoreState(loop_data.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = false,
});
// Emit a jump with a relocation. It will be patched up after the block ends.
// Leave the jump offset undefined
_ = try func.jump(loop_data.jmp_target);
// Stop tracking block result without forgetting tracking info
try func.freeValue(block_tracking.short);
// We already took care of pl_op.operand earlier, so there's nothing left to do
func.finishAirBookkeeping();
}
@ -5865,6 +6000,19 @@ fn airBr(func: *Func, inst: Air.Inst.Index) !void {
func.finishAirBookkeeping();
}
fn airRepeat(func: *Func, inst: Air.Inst.Index) !void {
const loop_inst = func.air.instructions.items(.data)[@intFromEnum(inst)].repeat.loop_inst;
const repeat_info = func.loops.get(loop_inst).?;
try func.restoreState(repeat_info.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = true,
});
_ = try func.jump(repeat_info.jmp_target);
func.finishAirBookkeeping();
}
fn airBoolOp(func: *Func, inst: Air.Inst.Index) !void {
const bin_op = func.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
const tag: Air.Inst.Tag = func.air.instructions.items(.tag)[@intFromEnum(inst)];
@ -8285,7 +8433,10 @@ fn typeOf(func: *Func, inst: Air.Inst.Ref) Type {
fn typeOfIndex(func: *Func, inst: Air.Inst.Index) Type {
const zcu = func.pt.zcu;
return func.air.typeOfIndex(inst, &zcu.intern_pool);
return switch (func.air.instructions.items(.tag)[@intFromEnum(inst)]) {
.loop_switch_br => func.typeOf(func.air.unwrapSwitch(inst).operand),
else => func.air.typeOfIndex(inst, &zcu.intern_pool),
};
}
fn hasFeature(func: *Func, feature: Target.riscv.Feature) bool {

View File

@ -576,6 +576,8 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.bitcast => try self.airBitCast(inst),
.block => try self.airBlock(inst),
.br => try self.airBr(inst),
.repeat => return self.fail("TODO implement `repeat`", .{}),
.switch_dispatch => return self.fail("TODO implement `switch_dispatch`", .{}),
.trap => try self.airTrap(),
.breakpoint => try self.airBreakpoint(),
.ret_addr => @panic("TODO try self.airRetAddr(inst)"),
@ -666,6 +668,7 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.field_parent_ptr => @panic("TODO try self.airFieldParentPtr(inst)"),
.switch_br => try self.airSwitch(inst),
.loop_switch_br => return self.fail("TODO implement `loop_switch_br`", .{}),
.slice_ptr => try self.airSlicePtr(inst),
.slice_len => try self.airSliceLen(inst),

View File

@ -662,6 +662,8 @@ blocks: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, struct {
label: u32,
value: WValue,
}) = .{},
/// Maps `loop` instructions to their label. `br` to here repeats the loop.
loops: std.AutoHashMapUnmanaged(Air.Inst.Index, u32) = .{},
/// `bytes` contains the wasm bytecode belonging to the 'code' section.
code: *ArrayList(u8),
/// The index the next local generated will have
@ -751,6 +753,7 @@ pub fn deinit(func: *CodeGen) void {
}
func.branches.deinit(func.gpa);
func.blocks.deinit(func.gpa);
func.loops.deinit(func.gpa);
func.locals.deinit(func.gpa);
func.simd_immediates.deinit(func.gpa);
func.mir_instructions.deinit(func.gpa);
@ -1903,6 +1906,8 @@ fn genInst(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
.trap => func.airTrap(inst),
.breakpoint => func.airBreakpoint(inst),
.br => func.airBr(inst),
.repeat => func.airRepeat(inst),
.switch_dispatch => return func.fail("TODO implement `switch_dispatch`", .{}),
.int_from_bool => func.airIntFromBool(inst),
.cond_br => func.airCondBr(inst),
.intcast => func.airIntcast(inst),
@ -1984,6 +1989,7 @@ fn genInst(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
.field_parent_ptr => func.airFieldParentPtr(inst),
.switch_br => func.airSwitchBr(inst),
.loop_switch_br => return func.fail("TODO implement `loop_switch_br`", .{}),
.trunc => func.airTrunc(inst),
.unreach => func.airUnreachable(inst),
@ -3534,10 +3540,11 @@ fn airLoop(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
// result type of loop is always 'noreturn', meaning we can always
// emit the wasm type 'block_empty'.
try func.startBlock(.loop, wasm.block_empty);
try func.genBody(body);
// breaking to the index of a loop block will continue the loop instead
try func.addLabel(.br, 0);
try func.loops.putNoClobber(func.gpa, inst, func.block_depth);
defer assert(func.loops.remove(inst));
try func.genBody(body);
try func.endBlock();
return func.finishAir(inst, .none, &.{});
@ -3734,6 +3741,16 @@ fn airBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
return func.finishAir(inst, .none, &.{br.operand});
}
fn airRepeat(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const repeat = func.air.instructions.items(.data)[@intFromEnum(inst)].repeat;
const loop_label = func.loops.get(repeat.loop_inst).?;
const idx: u32 = func.block_depth - loop_label;
try func.addLabel(.br, idx);
return func.finishAir(inst, .none, &.{});
}
fn airNot(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const ty_op = func.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
@ -4050,7 +4067,10 @@ fn airSwitchBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
defer func.gpa.free(liveness.deaths);
// a list that maps each value with its value and body based on the order inside the list.
const CaseValue = struct { integer: i32, value: Value };
const CaseValue = union(enum) {
singular: struct { integer: i32, value: Value },
range: struct { min: i32, min_value: Value, max: i32, max_value: Value },
};
var case_list = try std.ArrayList(struct {
values: []const CaseValue,
body: []const Air.Inst.Index,
@ -4061,10 +4081,9 @@ fn airSwitchBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
var lowest_maybe: ?i32 = null;
var highest_maybe: ?i32 = null;
var it = switch_br.iterateCases();
while (it.next()) |case| {
const values = try func.gpa.alloc(CaseValue, case.items.len);
const values = try func.gpa.alloc(CaseValue, case.items.len + case.ranges.len);
errdefer func.gpa.free(values);
for (case.items, 0..) |ref, i| {
@ -4076,7 +4095,30 @@ fn airSwitchBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
if (highest_maybe == null or int_val > highest_maybe.?) {
highest_maybe = int_val;
}
values[i] = .{ .integer = int_val, .value = item_val };
values[i] = .{ .singular = .{ .integer = int_val, .value = item_val } };
}
for (case.ranges, 0..) |range, i| {
const min_val = (try func.air.value(range[0], pt)).?;
const int_min_val = func.valueAsI32(min_val);
if (lowest_maybe == null or int_min_val < lowest_maybe.?) {
lowest_maybe = int_min_val;
}
const max_val = (try func.air.value(range[1], pt)).?;
const int_max_val = func.valueAsI32(max_val);
if (highest_maybe == null or int_max_val > highest_maybe.?) {
highest_maybe = int_max_val;
}
values[i + case.items.len] = .{ .range = .{
.min = int_min_val,
.min_value = min_val,
.max = int_max_val,
.max_value = max_val,
} };
}
case_list.appendAssumeCapacity(.{ .values = values, .body = case.body });
@ -4129,7 +4171,12 @@ fn airSwitchBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
const idx = blk: {
for (case_list.items, 0..) |case, idx| {
for (case.values) |case_value| {
if (case_value.integer == value) break :blk @as(u32, @intCast(idx));
switch (case_value) {
.singular => |val| if (val.integer == value) break :blk @as(u32, @intCast(idx)),
.range => |range_val| if (value >= range_val.min and value <= range_val.max) {
break :blk @as(u32, @intCast(idx));
},
}
}
}
// error sets are almost always sparse so we use the default case
@ -4145,43 +4192,34 @@ fn airSwitchBr(func: *CodeGen, inst: Air.Inst.Index) InnerError!void {
try func.endBlock();
}
const signedness: std.builtin.Signedness = blk: {
// by default we tell the operand type is unsigned (i.e. bools and enum values)
if (target_ty.zigTypeTag(zcu) != .int) break :blk .unsigned;
// incase of an actual integer, we emit the correct signedness
break :blk target_ty.intInfo(zcu).signedness;
};
try func.branches.ensureUnusedCapacity(func.gpa, case_list.items.len + @intFromBool(has_else_body));
for (case_list.items, 0..) |case, index| {
// when sparse, we use if/else-chain, so emit conditional checks
if (is_sparse) {
// for single value prong we can emit a simple if
if (case.values.len == 1) {
try func.emitWValue(target);
const val = try func.lowerConstant(case.values[0].value, target_ty);
try func.emitWValue(val);
const opcode = buildOpcode(.{
.valtype1 = typeToValtype(target_ty, pt, func.target.*),
.op = .ne, // not equal, because we want to jump out of this block if it does not match the condition.
.signedness = signedness,
});
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
// for single value prong we can emit a simple condition
if (case.values.len == 1 and case.values[0] == .singular) {
const val = try func.lowerConstant(case.values[0].singular.value, target_ty);
// not equal, because we want to jump out of this block if it does not match the condition.
_ = try func.cmp(target, val, target_ty, .neq);
try func.addLabel(.br_if, 0);
} else {
// in multi-value prongs we must check if any prongs match the target value.
try func.startBlock(.block, blocktype);
for (case.values) |value| {
try func.emitWValue(target);
const val = try func.lowerConstant(value.value, target_ty);
try func.emitWValue(val);
const opcode = buildOpcode(.{
.valtype1 = typeToValtype(target_ty, pt, func.target.*),
.op = .eq,
.signedness = signedness,
});
try func.addTag(Mir.Inst.Tag.fromOpcode(opcode));
switch (value) {
.singular => |single_val| {
const val = try func.lowerConstant(single_val.value, target_ty);
_ = try func.cmp(target, val, target_ty, .eq);
},
.range => |range| {
const min_val = try func.lowerConstant(range.min_value, target_ty);
const max_val = try func.lowerConstant(range.max_value, target_ty);
const gte = try func.cmp(target, min_val, target_ty, .gte);
const lte = try func.cmp(target, max_val, target_ty, .lte);
_ = try func.binOp(gte, lte, Type.bool, .@"and");
},
}
try func.addLabel(.br_if, 0);
}
// value did not match any of the prong values

View File

@ -105,6 +105,13 @@ frame_allocs: std.MultiArrayList(FrameAlloc) = .{},
free_frame_indices: std.AutoArrayHashMapUnmanaged(FrameIndex, void) = .{},
frame_locs: std.MultiArrayList(Mir.FrameLoc) = .{},
loops: std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
/// The state to restore before branching.
state: State,
/// The branch target.
jmp_target: Mir.Inst.Index,
}) = .{},
/// Debug field, used to find bugs in the compiler.
air_bookkeeping: @TypeOf(air_bookkeeping_init) = air_bookkeeping_init,
@ -212,6 +219,38 @@ pub const MCValue = union(enum) {
reserved_frame: FrameIndex,
air_ref: Air.Inst.Ref,
fn isModifiable(mcv: MCValue) bool {
return switch (mcv) {
.none,
.unreach,
.dead,
.undef,
.immediate,
.register_offset,
.eflags,
.register_overflow,
.lea_symbol,
.lea_direct,
.lea_got,
.lea_tlv,
.lea_frame,
.elementwise_regs_then_frame,
.reserved_frame,
.air_ref,
=> false,
.register,
.register_pair,
.memory,
.load_symbol,
.load_got,
.load_direct,
.load_tlv,
.indirect,
=> true,
.load_frame => |frame_addr| !frame_addr.index.isNamed(),
};
}
fn isMemory(mcv: MCValue) bool {
return switch (mcv) {
.memory, .indirect, .load_frame => true,
@ -815,6 +854,7 @@ pub fn generate(
function.frame_allocs.deinit(gpa);
function.free_frame_indices.deinit(gpa);
function.frame_locs.deinit(gpa);
function.loops.deinit(gpa);
var block_it = function.blocks.valueIterator();
while (block_it.next()) |block| block.deinit(gpa);
function.blocks.deinit(gpa);
@ -2148,18 +2188,20 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
const air_tags = self.air.instructions.items(.tag);
self.arg_index = 0;
for (body) |inst| {
wip_mir_log.debug("{}", .{self.fmtAir(inst)});
verbose_tracking_log.debug("{}", .{self.fmtTracking()});
for (body) |inst| switch (air_tags[@intFromEnum(inst)]) {
.arg => {
wip_mir_log.debug("{}", .{self.fmtAir(inst)});
verbose_tracking_log.debug("{}", .{self.fmtTracking()});
const old_air_bookkeeping = self.air_bookkeeping;
try self.inst_tracking.ensureUnusedCapacity(self.gpa, 1);
switch (air_tags[@intFromEnum(inst)]) {
.arg => try self.airArg(inst),
else => break,
}
self.checkInvariantsAfterAirInst(inst, old_air_bookkeeping);
}
const old_air_bookkeeping = self.air_bookkeeping;
try self.inst_tracking.ensureUnusedCapacity(self.gpa, 1);
try self.airArg(inst);
self.checkInvariantsAfterAirInst(inst, old_air_bookkeeping);
},
else => break,
};
if (self.arg_index == 0) try self.airDbgVarArgs();
self.arg_index = 0;
@ -2247,6 +2289,8 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.bitcast => try self.airBitCast(inst),
.block => try self.airBlock(inst),
.br => try self.airBr(inst),
.repeat => try self.airRepeat(inst),
.switch_dispatch => try self.airSwitchDispatch(inst),
.trap => try self.airTrap(),
.breakpoint => try self.airBreakpoint(),
.ret_addr => try self.airRetAddr(inst),
@ -2335,6 +2379,7 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
.field_parent_ptr => try self.airFieldParentPtr(inst),
.switch_br => try self.airSwitchBr(inst),
.loop_switch_br => try self.airLoopSwitchBr(inst),
.slice_ptr => try self.airSlicePtr(inst),
.slice_len => try self.airSliceLen(inst),
@ -13626,16 +13671,13 @@ fn airLoop(self: *Self, inst: Air.Inst.Index) !void {
self.scope_generation += 1;
const state = try self.saveState();
const jmp_target: Mir.Inst.Index = @intCast(self.mir_instructions.len);
try self.genBody(body);
try self.restoreState(state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = true,
try self.loops.putNoClobber(self.gpa, inst, .{
.state = state,
.jmp_target = @intCast(self.mir_instructions.len),
});
_ = try self.asmJmpReloc(jmp_target);
defer assert(self.loops.remove(inst));
try self.genBody(body);
self.finishAirBookkeeping();
}
@ -13676,30 +13718,28 @@ fn lowerBlock(self: *Self, inst: Air.Inst.Index, body: []const Air.Inst.Index) !
self.finishAirBookkeeping();
}
fn airSwitchBr(self: *Self, inst: Air.Inst.Index) !void {
const switch_br = self.air.unwrapSwitch(inst);
const condition = try self.resolveInst(switch_br.operand);
fn lowerSwitchBr(self: *Self, inst: Air.Inst.Index, switch_br: Air.UnwrappedSwitch, condition: MCValue) !void {
const zcu = self.pt.zcu;
const condition_ty = self.typeOf(switch_br.operand);
const liveness = try self.liveness.getSwitchBr(self.gpa, inst, switch_br.cases_len + 1);
defer self.gpa.free(liveness.deaths);
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (self.liveness.operandDies(inst, 0)) {
if (switch_br.operand.toIndex()) |op_inst| try self.processDeath(op_inst);
}
const signedness = switch (condition_ty.zigTypeTag(zcu)) {
.bool, .pointer => .unsigned,
.int, .@"enum", .error_set => condition_ty.intInfo(zcu).signedness,
else => unreachable,
};
self.scope_generation += 1;
const state = try self.saveState();
var it = switch_br.iterateCases();
while (it.next()) |case| {
var relocs = try self.gpa.alloc(Mir.Inst.Index, case.items.len);
var relocs = try self.gpa.alloc(Mir.Inst.Index, case.items.len + case.ranges.len);
defer self.gpa.free(relocs);
try self.spillEflagsIfOccupied();
for (case.items, relocs, 0..) |item, *reloc, i| {
for (case.items, relocs[0..case.items.len]) |item, *reloc| {
const item_mcv = try self.resolveInst(item);
const cc: Condition = switch (condition) {
.eflags => |cc| switch (item_mcv.immediate) {
@ -13712,12 +13752,62 @@ fn airSwitchBr(self: *Self, inst: Air.Inst.Index) !void {
break :cc .e;
},
};
reloc.* = try self.asmJccReloc(if (i < relocs.len - 1) cc else cc.negate(), undefined);
reloc.* = try self.asmJccReloc(cc, undefined);
}
for (case.ranges, relocs[case.items.len..]) |range, *reloc| {
const min_mcv = try self.resolveInst(range[0]);
const max_mcv = try self.resolveInst(range[1]);
// `null` means always false.
const lt_min: ?Condition = switch (condition) {
.eflags => |cc| switch (min_mcv.immediate) {
0 => null, // condition never <0
1 => cc.negate(),
else => unreachable,
},
else => cc: {
try self.genBinOpMir(.{ ._, .cmp }, condition_ty, condition, min_mcv);
break :cc switch (signedness) {
.unsigned => .b,
.signed => .l,
};
},
};
const lt_min_reloc = if (lt_min) |cc| r: {
break :r try self.asmJccReloc(cc, undefined);
} else null;
// `null` means always true.
const lte_max: ?Condition = switch (condition) {
.eflags => |cc| switch (max_mcv.immediate) {
0 => cc.negate(),
1 => null, // condition always >=1
else => unreachable,
},
else => cc: {
try self.genBinOpMir(.{ ._, .cmp }, condition_ty, condition, max_mcv);
break :cc switch (signedness) {
.unsigned => .be,
.signed => .le,
};
},
};
// "Success" case is in `reloc`....
if (lte_max) |cc| {
reloc.* = try self.asmJccReloc(cc, undefined);
} else {
reloc.* = try self.asmJmpReloc(undefined);
}
// ...and "fail" case falls through to next checks.
if (lt_min_reloc) |r| self.performReloc(r);
}
// The jump to skip this case if the conditions all failed.
const skip_case_reloc = try self.asmJmpReloc(undefined);
for (liveness.deaths[case.idx]) |operand| try self.processDeath(operand);
for (relocs[0 .. relocs.len - 1]) |reloc| self.performReloc(reloc);
// Relocate all success cases to the body we're about to generate.
for (relocs) |reloc| self.performReloc(reloc);
try self.genBody(case.body);
try self.restoreState(state, &.{}, .{
.emit_instructions = false,
@ -13726,7 +13816,8 @@ fn airSwitchBr(self: *Self, inst: Air.Inst.Index) !void {
.close_scope = true,
});
self.performReloc(relocs[relocs.len - 1]);
// Relocate the "skip" branch to fall through to the next case.
self.performReloc(skip_case_reloc);
}
if (switch_br.else_body_len > 0) {
@ -13743,11 +13834,111 @@ fn airSwitchBr(self: *Self, inst: Air.Inst.Index) !void {
.close_scope = true,
});
}
}
fn airSwitchBr(self: *Self, inst: Air.Inst.Index) !void {
const switch_br = self.air.unwrapSwitch(inst);
const condition = try self.resolveInst(switch_br.operand);
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (self.liveness.operandDies(inst, 0)) {
if (switch_br.operand.toIndex()) |op_inst| try self.processDeath(op_inst);
}
try self.lowerSwitchBr(inst, switch_br, condition);
// We already took care of pl_op.operand earlier, so there's nothing left to do
self.finishAirBookkeeping();
}
fn airLoopSwitchBr(self: *Self, inst: Air.Inst.Index) !void {
const switch_br = self.air.unwrapSwitch(inst);
const condition = try self.resolveInst(switch_br.operand);
const mat_cond = if (condition.isModifiable() and
self.reuseOperand(inst, switch_br.operand, 0, condition))
condition
else mat_cond: {
const mat_cond = try self.allocRegOrMem(inst, true);
try self.genCopy(self.typeOf(switch_br.operand), mat_cond, condition, .{});
break :mat_cond mat_cond;
};
self.inst_tracking.putAssumeCapacityNoClobber(inst, InstTracking.init(mat_cond));
// If the condition dies here in this switch instruction, process
// that death now instead of later as this has an effect on
// whether it needs to be spilled in the branches
if (self.liveness.operandDies(inst, 0)) {
if (switch_br.operand.toIndex()) |op_inst| try self.processDeath(op_inst);
}
self.scope_generation += 1;
const state = try self.saveState();
try self.loops.putNoClobber(self.gpa, inst, .{
.state = state,
.jmp_target = @intCast(self.mir_instructions.len),
});
defer assert(self.loops.remove(inst));
// Stop tracking block result without forgetting tracking info
try self.freeValue(mat_cond);
try self.lowerSwitchBr(inst, switch_br, mat_cond);
try self.processDeath(inst);
self.finishAirBookkeeping();
}
fn airSwitchDispatch(self: *Self, inst: Air.Inst.Index) !void {
const br = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block_ty = self.typeOfIndex(br.block_inst);
const block_tracking = self.inst_tracking.getPtr(br.block_inst).?;
const loop_data = self.loops.getPtr(br.block_inst).?;
done: {
try self.getValue(block_tracking.short, null);
const src_mcv = try self.resolveInst(br.operand);
if (self.reuseOperandAdvanced(inst, br.operand, 0, src_mcv, br.block_inst)) {
try self.getValue(block_tracking.short, br.block_inst);
// .long = .none to avoid merging operand and block result stack frames.
const current_tracking: InstTracking = .{ .long = .none, .short = src_mcv };
try current_tracking.materializeUnsafe(self, br.block_inst, block_tracking.*);
for (current_tracking.getRegs()) |src_reg| self.register_manager.freeReg(src_reg);
break :done;
}
try self.getValue(block_tracking.short, br.block_inst);
const dst_mcv = block_tracking.short;
try self.genCopy(block_ty, dst_mcv, try self.resolveInst(br.operand), .{});
break :done;
}
// Process operand death so that it is properly accounted for in the State below.
if (self.liveness.operandDies(inst, 0)) {
if (br.operand.toIndex()) |op_inst| try self.processDeath(op_inst);
}
try self.restoreState(loop_data.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = false,
});
// Emit a jump with a relocation. It will be patched up after the block ends.
// Leave the jump offset undefined
_ = try self.asmJmpReloc(loop_data.jmp_target);
// Stop tracking block result without forgetting tracking info
try self.freeValue(block_tracking.short);
self.finishAirBookkeeping();
}
fn performReloc(self: *Self, reloc: Mir.Inst.Index) void {
const next_inst: u32 = @intCast(self.mir_instructions.len);
switch (self.mir_instructions.items(.tag)[reloc]) {
@ -13822,6 +14013,19 @@ fn airBr(self: *Self, inst: Air.Inst.Index) !void {
self.finishAirBookkeeping();
}
fn airRepeat(self: *Self, inst: Air.Inst.Index) !void {
const loop_inst = self.air.instructions.items(.data)[@intFromEnum(inst)].repeat.loop_inst;
const repeat_info = self.loops.get(loop_inst).?;
try self.restoreState(repeat_info.state, &.{}, .{
.emit_instructions = true,
.update_tracking = false,
.resurrect = false,
.close_scope = true,
});
_ = try self.asmJmpReloc(repeat_info.jmp_target);
self.finishAirBookkeeping();
}
fn airAsm(self: *Self, inst: Air.Inst.Index) !void {
const pt = self.pt;
const zcu = pt.zcu;
@ -19498,7 +19702,10 @@ fn typeOf(self: *Self, inst: Air.Inst.Ref) Type {
fn typeOfIndex(self: *Self, inst: Air.Inst.Index) Type {
const pt = self.pt;
const zcu = pt.zcu;
return self.air.typeOfIndex(inst, &zcu.intern_pool);
return switch (self.air.instructions.items(.tag)[@intFromEnum(inst)]) {
.loop_switch_br => self.typeOf(self.air.unwrapSwitch(inst).operand),
else => self.air.typeOfIndex(inst, &zcu.intern_pool),
};
}
fn intCompilerRtAbiName(int_bits: u32) u8 {

View File

@ -321,6 +321,9 @@ pub const Function = struct {
/// by type alignment.
/// The value is whether the alloc needs to be emitted in the header.
allocs: std.AutoArrayHashMapUnmanaged(LocalIndex, bool) = .{},
/// Maps from `loop_switch_br` instructions to the allocated local used
/// for the switch cond. Dispatches should set this local to the new cond.
loop_switch_conds: std.AutoHashMapUnmanaged(Air.Inst.Index, LocalIndex) = .{},
fn resolveInst(f: *Function, ref: Air.Inst.Ref) !CValue {
const gop = try f.value_map.getOrPut(ref);
@ -531,6 +534,7 @@ pub const Function = struct {
f.blocks.deinit(gpa);
f.value_map.deinit();
f.lazy_fns.deinit(gpa);
f.loop_switch_conds.deinit(gpa);
}
fn typeOf(f: *Function, inst: Air.Inst.Ref) Type {
@ -3137,11 +3141,9 @@ fn genBodyInner(f: *Function, body: []const Air.Inst.Index) error{ AnalysisFail,
.arg => try airArg(f, inst),
.trap => try airTrap(f, f.object.writer()),
.breakpoint => try airBreakpoint(f.object.writer()),
.ret_addr => try airRetAddr(f, inst),
.frame_addr => try airFrameAddress(f, inst),
.unreach => try airUnreach(f),
.fence => try airFence(f, inst),
.ptr_add => try airPtrAddSub(f, inst, '+'),
@ -3248,21 +3250,13 @@ fn genBodyInner(f: *Function, body: []const Air.Inst.Index) error{ AnalysisFail,
.alloc => try airAlloc(f, inst),
.ret_ptr => try airRetPtr(f, inst),
.assembly => try airAsm(f, inst),
.block => try airBlock(f, inst),
.bitcast => try airBitcast(f, inst),
.intcast => try airIntCast(f, inst),
.trunc => try airTrunc(f, inst),
.int_from_bool => try airIntFromBool(f, inst),
.load => try airLoad(f, inst),
.ret => try airRet(f, inst, false),
.ret_safe => try airRet(f, inst, false), // TODO
.ret_load => try airRet(f, inst, true),
.store => try airStore(f, inst, false),
.store_safe => try airStore(f, inst, true),
.loop => try airLoop(f, inst),
.cond_br => try airCondBr(f, inst),
.br => try airBr(f, inst),
.switch_br => try airSwitchBr(f, inst),
.struct_field_ptr => try airStructFieldPtr(f, inst),
.array_to_slice => try airArrayToSlice(f, inst),
.cmpxchg_weak => try airCmpxchg(f, inst, "weak"),
@ -3296,14 +3290,8 @@ fn genBodyInner(f: *Function, body: []const Air.Inst.Index) error{ AnalysisFail,
.try_ptr_cold => try airTryPtr(f, inst),
.dbg_stmt => try airDbgStmt(f, inst),
.dbg_inline_block => try airDbgInlineBlock(f, inst),
.dbg_var_ptr, .dbg_var_val, .dbg_arg_inline => try airDbgVar(f, inst),
.call => try airCall(f, inst, .auto),
.call_always_tail => .none,
.call_never_tail => try airCall(f, inst, .never_tail),
.call_never_inline => try airCall(f, inst, .never_inline),
.float_from_int,
.int_from_float,
.fptrunc,
@ -3390,6 +3378,41 @@ fn genBodyInner(f: *Function, body: []const Air.Inst.Index) error{ AnalysisFail,
.work_group_size,
.work_group_id,
=> unreachable,
// Instructions that are known to always be `noreturn` based on their tag.
.br => return airBr(f, inst),
.repeat => return airRepeat(f, inst),
.switch_dispatch => return airSwitchDispatch(f, inst),
.cond_br => return airCondBr(f, inst),
.switch_br => return airSwitchBr(f, inst, false),
.loop_switch_br => return airSwitchBr(f, inst, true),
.loop => return airLoop(f, inst),
.ret => return airRet(f, inst, false),
.ret_safe => return airRet(f, inst, false), // TODO
.ret_load => return airRet(f, inst, true),
.trap => return airTrap(f, f.object.writer()),
.unreach => return airUnreach(f),
// Instructions which may be `noreturn`.
.block => res: {
const res = try airBlock(f, inst);
if (f.typeOfIndex(inst).isNoReturn(zcu)) return;
break :res res;
},
.dbg_inline_block => res: {
const res = try airDbgInlineBlock(f, inst);
if (f.typeOfIndex(inst).isNoReturn(zcu)) return;
break :res res;
},
// TODO: calls should be in this category! The AIR we emit for them is a bit weird.
// The instruction has type `noreturn`, but there are instructions (and maybe a safety
// check) following nonetheless. The `unreachable` or safety check should be emitted by
// backends instead.
.call => try airCall(f, inst, .auto),
.call_always_tail => .none,
.call_never_tail => try airCall(f, inst, .never_tail),
.call_never_inline => try airCall(f, inst, .never_inline),
// zig fmt: on
};
if (result_value == .new_local) {
@ -3401,6 +3424,7 @@ fn genBodyInner(f: *Function, body: []const Air.Inst.Index) error{ AnalysisFail,
else => result_value,
});
}
unreachable;
}
fn airSliceField(f: *Function, inst: Air.Inst.Index, is_ptr: bool, field_name: []const u8) !CValue {
@ -3718,7 +3742,7 @@ fn airLoad(f: *Function, inst: Air.Inst.Index) !CValue {
return local;
}
fn airRet(f: *Function, inst: Air.Inst.Index, is_ptr: bool) !CValue {
fn airRet(f: *Function, inst: Air.Inst.Index, is_ptr: bool) !void {
const pt = f.object.dg.pt;
const zcu = pt.zcu;
const un_op = f.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
@ -3769,7 +3793,6 @@ fn airRet(f: *Function, inst: Air.Inst.Index, is_ptr: bool) !CValue {
// Not even allowed to return void in a naked function.
if (!f.object.dg.is_naked_fn) try writer.writeAll("return;\n");
}
return .none;
}
fn airIntCast(f: *Function, inst: Air.Inst.Index) !CValue {
@ -4741,7 +4764,7 @@ fn lowerTry(
return local;
}
fn airBr(f: *Function, inst: Air.Inst.Index) !CValue {
fn airBr(f: *Function, inst: Air.Inst.Index) !void {
const branch = f.air.instructions.items(.data)[@intFromEnum(inst)].br;
const block = f.blocks.get(branch.block_inst).?;
const result = block.result;
@ -4761,7 +4784,52 @@ fn airBr(f: *Function, inst: Air.Inst.Index) !CValue {
}
try writer.print("goto zig_block_{d};\n", .{block.block_id});
return .none;
}
fn airRepeat(f: *Function, inst: Air.Inst.Index) !void {
const repeat = f.air.instructions.items(.data)[@intFromEnum(inst)].repeat;
const writer = f.object.writer();
try writer.print("goto zig_loop_{d};\n", .{@intFromEnum(repeat.loop_inst)});
}
fn airSwitchDispatch(f: *Function, inst: Air.Inst.Index) !void {
const pt = f.object.dg.pt;
const zcu = pt.zcu;
const br = f.air.instructions.items(.data)[@intFromEnum(inst)].br;
const writer = f.object.writer();
if (try f.air.value(br.operand, pt)) |cond_val| {
// Comptime-known dispatch. Iterate the cases to find the correct
// one, and branch directly to the corresponding case.
const switch_br = f.air.unwrapSwitch(br.block_inst);
var it = switch_br.iterateCases();
const target_case_idx: u32 = target: while (it.next()) |case| {
for (case.items) |item| {
const val = Value.fromInterned(item.toInterned().?);
if (cond_val.compareHetero(.eq, val, zcu)) break :target case.idx;
}
for (case.ranges) |range| {
const low = Value.fromInterned(range[0].toInterned().?);
const high = Value.fromInterned(range[1].toInterned().?);
if (cond_val.compareHetero(.gte, low, zcu) and
cond_val.compareHetero(.lte, high, zcu))
{
break :target case.idx;
}
}
} else switch_br.cases_len;
try writer.print("goto zig_switch_{d}_dispatch_{d};\n", .{ @intFromEnum(br.block_inst), target_case_idx });
return;
}
// Runtime-known dispatch. Set the switch condition, and branch back.
const cond = try f.resolveInst(br.operand);
const cond_local = f.loop_switch_conds.get(br.block_inst).?;
try f.writeCValue(writer, .{ .local = cond_local }, .Other);
try writer.writeAll(" = ");
try f.writeCValue(writer, cond, .Initializer);
try writer.writeAll(";\n");
try writer.print("goto zig_switch_{d}_loop;", .{@intFromEnum(br.block_inst)});
}
fn airBitcast(f: *Function, inst: Air.Inst.Index) !CValue {
@ -4889,12 +4957,10 @@ fn bitcast(f: *Function, dest_ty: Type, operand: CValue, operand_ty: Type) !CVal
return local;
}
fn airTrap(f: *Function, writer: anytype) !CValue {
fn airTrap(f: *Function, writer: anytype) !void {
// Not even allowed to call trap in a naked function.
if (f.object.dg.is_naked_fn) return .none;
if (f.object.dg.is_naked_fn) return;
try writer.writeAll("zig_trap();\n");
return .none;
}
fn airBreakpoint(writer: anytype) !CValue {
@ -4933,28 +4999,27 @@ fn airFence(f: *Function, inst: Air.Inst.Index) !CValue {
return .none;
}
fn airUnreach(f: *Function) !CValue {
fn airUnreach(f: *Function) !void {
// Not even allowed to call unreachable in a naked function.
if (f.object.dg.is_naked_fn) return .none;
if (f.object.dg.is_naked_fn) return;
try f.object.writer().writeAll("zig_unreachable();\n");
return .none;
}
fn airLoop(f: *Function, inst: Air.Inst.Index) !CValue {
fn airLoop(f: *Function, inst: Air.Inst.Index) !void {
const ty_pl = f.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = f.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(f.air.extra[loop.end..][0..loop.data.body_len]);
const writer = f.object.writer();
try writer.writeAll("for (;;) ");
try genBody(f, body); // no need to restore state, we're noreturn
try writer.writeByte('\n');
return .none;
// `repeat` instructions matching this loop will branch to
// this label. Since we need a label for arbitrary `repeat`
// anyway, there's actually no need to use a "real" looping
// construct at all!
try writer.print("zig_loop_{d}:\n", .{@intFromEnum(inst)});
try genBodyInner(f, body); // no need to restore state, we're noreturn
}
fn airCondBr(f: *Function, inst: Air.Inst.Index) !CValue {
fn airCondBr(f: *Function, inst: Air.Inst.Index) !void {
const pl_op = f.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond = try f.resolveInst(pl_op.operand);
try reap(f, inst, &.{pl_op.operand});
@ -4983,19 +5048,33 @@ fn airCondBr(f: *Function, inst: Air.Inst.Index) !CValue {
// instance) `br` to a block (label).
try genBodyInner(f, else_body);
return .none;
}
fn airSwitchBr(f: *Function, inst: Air.Inst.Index) !CValue {
fn airSwitchBr(f: *Function, inst: Air.Inst.Index, is_dispatch_loop: bool) !void {
const pt = f.object.dg.pt;
const zcu = pt.zcu;
const gpa = f.object.dg.gpa;
const switch_br = f.air.unwrapSwitch(inst);
const condition = try f.resolveInst(switch_br.operand);
const init_condition = try f.resolveInst(switch_br.operand);
try reap(f, inst, &.{switch_br.operand});
const condition_ty = f.typeOf(switch_br.operand);
const writer = f.object.writer();
// For dispatches, we will create a local alloc to contain the condition value.
// This may not result in optimal codegen for switch loops, but it minimizes the
// amount of C code we generate, which is probably more desirable here (and is simpler).
const condition = if (is_dispatch_loop) cond: {
const new_local = try f.allocLocal(inst, condition_ty);
try f.copyCValue(try f.ctypeFromType(condition_ty, .complete), new_local, init_condition);
try writer.print("zig_switch_{d}_loop:\n", .{@intFromEnum(inst)});
try f.loop_switch_conds.put(gpa, inst, new_local.new_local);
break :cond new_local;
} else init_condition;
defer if (is_dispatch_loop) {
assert(f.loop_switch_conds.remove(inst));
};
try writer.writeAll("switch (");
const lowered_condition_ty = if (condition_ty.toIntern() == .bool_type)
@ -5013,23 +5092,29 @@ fn airSwitchBr(f: *Function, inst: Air.Inst.Index) !CValue {
try writer.writeAll(") {");
f.object.indent_writer.pushIndent();
const gpa = f.object.dg.gpa;
const liveness = try f.liveness.getSwitchBr(gpa, inst, switch_br.cases_len + 1);
defer gpa.free(liveness.deaths);
// On the final iteration we do not need to fix any state. This is because, like in the `else`
// branch of a `cond_br`, our parent has to do it for this entire body anyway.
const last_case_i = switch_br.cases_len - @intFromBool(switch_br.else_body_len == 0);
var any_range_cases = false;
var it = switch_br.iterateCases();
while (it.next()) |case| {
if (case.ranges.len > 0) {
any_range_cases = true;
continue;
}
for (case.items) |item| {
try f.object.indent_writer.insertNewline();
try writer.writeAll("case ");
const item_value = try f.air.value(item, pt);
if (item_value.?.getUnsignedInt(zcu)) |item_int| try writer.print("{}\n", .{
try f.fmtIntLiteral(try pt.intValue(lowered_condition_ty, item_int)),
}) else {
// If `item_value` is a pointer with a known integer address, print the address
// with no cast to avoid a warning.
write_val: {
if (condition_ty.isPtrAtRuntime(zcu)) {
if (item_value.?.getUnsignedInt(zcu)) |item_int| {
try writer.print("{}", .{try f.fmtIntLiteral(try pt.intValue(lowered_condition_ty, item_int))});
break :write_val;
}
}
if (condition_ty.isPtrAtRuntime(zcu)) {
try writer.writeByte('(');
try f.renderType(writer, Type.usize);
@ -5039,37 +5124,76 @@ fn airSwitchBr(f: *Function, inst: Air.Inst.Index) !CValue {
}
try writer.writeByte(':');
}
try writer.writeByte(' ');
if (case.idx != last_case_i) {
try genBodyResolveState(f, inst, liveness.deaths[case.idx], case.body, false);
} else {
for (liveness.deaths[case.idx]) |death| {
try die(f, inst, death.toRef());
}
try genBody(f, case.body);
try writer.writeAll(" {\n");
f.object.indent_writer.pushIndent();
if (is_dispatch_loop) {
try writer.print("zig_switch_{d}_dispatch_{d}: ", .{ @intFromEnum(inst), case.idx });
}
try genBodyResolveState(f, inst, liveness.deaths[case.idx], case.body, true);
f.object.indent_writer.popIndent();
try writer.writeByte('}');
// The case body must be noreturn so we don't need to insert a break.
}
const else_body = it.elseBody();
try f.object.indent_writer.insertNewline();
try writer.writeAll("default: ");
if (any_range_cases) {
// We will iterate the cases again to handle those with ranges, and generate
// code using conditions rather than switch cases for such cases.
it = switch_br.iterateCases();
while (it.next()) |case| {
if (case.ranges.len == 0) continue; // handled above
try writer.writeAll("if (");
for (case.items, 0..) |item, item_i| {
if (item_i != 0) try writer.writeAll(" || ");
try f.writeCValue(writer, condition, .Other);
try writer.writeAll(" == ");
try f.object.dg.renderValue(writer, (try f.air.value(item, pt)).?, .Other);
}
for (case.ranges, 0..) |range, range_i| {
if (case.items.len != 0 or range_i != 0) try writer.writeAll(" || ");
// "(x >= lower && x <= upper)"
try writer.writeByte('(');
try f.writeCValue(writer, condition, .Other);
try writer.writeAll(" >= ");
try f.object.dg.renderValue(writer, (try f.air.value(range[0], pt)).?, .Other);
try writer.writeAll(" && ");
try f.writeCValue(writer, condition, .Other);
try writer.writeAll(" <= ");
try f.object.dg.renderValue(writer, (try f.air.value(range[1], pt)).?, .Other);
try writer.writeByte(')');
}
try writer.writeAll(") {\n");
f.object.indent_writer.pushIndent();
if (is_dispatch_loop) {
try writer.print("zig_switch_{d}_dispatch_{d}: ", .{ @intFromEnum(inst), case.idx });
}
try genBodyResolveState(f, inst, liveness.deaths[case.idx], case.body, true);
f.object.indent_writer.popIndent();
try writer.writeByte('}');
}
}
if (is_dispatch_loop) {
try writer.print("zig_switch_{d}_dispatch_{d}: ", .{ @intFromEnum(inst), switch_br.cases_len });
}
if (else_body.len > 0) {
// Note that this must be the last case (i.e. the `last_case_i` case was not hit above)
// Note that this must be the last case, so we do not need to use `genBodyResolveState` since
// the parent block will do it (because the case body is noreturn).
for (liveness.deaths[liveness.deaths.len - 1]) |death| {
try die(f, inst, death.toRef());
}
try writer.writeAll("default: ");
try genBody(f, else_body);
} else {
try writer.writeAll("default: zig_unreachable();");
try writer.writeAll("zig_unreachable();");
}
try f.object.indent_writer.insertNewline();
f.object.indent_writer.popIndent();
try writer.writeAll("}\n");
return .none;
}
fn asmInputNeedsLocal(f: *Function, constraint: []const u8, value: CValue) bool {

View File

@ -1739,6 +1739,8 @@ pub const Object = struct {
.arg_inline_index = 0,
.func_inst_table = .{},
.blocks = .{},
.loops = .{},
.switch_dispatch_info = .{},
.sync_scope = if (owner_mod.single_threaded) .singlethread else .system,
.file = file,
.scope = subprogram,
@ -4860,6 +4862,13 @@ pub const FuncGen = struct {
breaks: *BreakList,
}),
/// Maps `loop` instructions to the bb to branch to to repeat the loop.
loops: std.AutoHashMapUnmanaged(Air.Inst.Index, Builder.Function.Block.Index),
/// Maps `loop_switch_br` instructions to the information required to lower
/// dispatches (`switch_dispatch` instructions).
switch_dispatch_info: std.AutoHashMapUnmanaged(Air.Inst.Index, SwitchDispatchInfo),
sync_scope: Builder.SyncScope,
const Fuzz = struct {
@ -4872,6 +4881,33 @@ pub const FuncGen = struct {
}
};
const SwitchDispatchInfo = struct {
/// These are the blocks corresponding to each switch case.
/// The final element corresponds to the `else` case.
/// Slices allocated into `gpa`.
case_blocks: []Builder.Function.Block.Index,
/// This is `.none` if `jmp_table` is set, since we won't use a `switch` instruction to dispatch.
switch_weights: Builder.Function.Instruction.BrCond.Weights,
/// If not `null`, we have manually constructed a jump table to reach the desired block.
/// `table` can be used if the value is between `min` and `max` inclusive.
/// We perform this lowering manually to avoid some questionable behavior from LLVM.
/// See `airSwitchBr` for details.
jmp_table: ?JmpTable,
const JmpTable = struct {
min: Builder.Constant,
max: Builder.Constant,
in_bounds_hint: enum { none, unpredictable, likely, unlikely },
/// Pointer to the jump table itself, to be used with `indirectbr`.
/// The index into the jump table is the dispatch condition minus `min`.
/// The table values are `blockaddress` constants corresponding to blocks in `case_blocks`.
table: Builder.Constant,
/// `true` if `table` conatins a reference to the `else` block.
/// In this case, the `indirectbr` must include the `else` block in its target list.
table_includes_else: bool,
};
};
const BreakList = union {
list: std.MultiArrayList(struct {
bb: Builder.Function.Block.Index,
@ -4886,6 +4922,12 @@ pub const FuncGen = struct {
self.wip.deinit();
self.func_inst_table.deinit(gpa);
self.blocks.deinit(gpa);
self.loops.deinit(gpa);
var it = self.switch_dispatch_info.valueIterator();
while (it.next()) |info| {
self.gpa.free(info.case_blocks);
}
self.switch_dispatch_info.deinit(gpa);
}
fn todo(self: *FuncGen, comptime format: []const u8, args: anytype) Error {
@ -5077,14 +5119,9 @@ pub const FuncGen = struct {
.arg => try self.airArg(inst),
.bitcast => try self.airBitCast(inst),
.int_from_bool => try self.airIntFromBool(inst),
.block => try self.airBlock(inst),
.br => try self.airBr(inst),
.switch_br => try self.airSwitchBr(inst),
.trap => try self.airTrap(inst),
.breakpoint => try self.airBreakpoint(inst),
.ret_addr => try self.airRetAddr(inst),
.frame_addr => try self.airFrameAddress(inst),
.cond_br => try self.airCondBr(inst),
.@"try" => try self.airTry(body[i..], false),
.try_cold => try self.airTry(body[i..], true),
.try_ptr => try self.airTryPtr(inst, false),
@ -5095,22 +5132,13 @@ pub const FuncGen = struct {
.fpext => try self.airFpext(inst),
.int_from_ptr => try self.airIntFromPtr(inst),
.load => try self.airLoad(body[i..]),
.loop => try self.airLoop(inst),
.not => try self.airNot(inst),
.ret => try self.airRet(inst, false),
.ret_safe => try self.airRet(inst, true),
.ret_load => try self.airRetLoad(inst),
.store => try self.airStore(inst, false),
.store_safe => try self.airStore(inst, true),
.assembly => try self.airAssembly(inst),
.slice_ptr => try self.airSliceField(inst, 0),
.slice_len => try self.airSliceField(inst, 1),
.call => try self.airCall(inst, .auto),
.call_always_tail => try self.airCall(inst, .always_tail),
.call_never_tail => try self.airCall(inst, .never_tail),
.call_never_inline => try self.airCall(inst, .never_inline),
.ptr_slice_ptr_ptr => try self.airPtrSliceFieldPtr(inst, 0),
.ptr_slice_len_ptr => try self.airPtrSliceFieldPtr(inst, 1),
@ -5195,9 +5223,7 @@ pub const FuncGen = struct {
.inferred_alloc, .inferred_alloc_comptime => unreachable,
.unreach => try self.airUnreach(inst),
.dbg_stmt => try self.airDbgStmt(inst),
.dbg_inline_block => try self.airDbgInlineBlock(inst),
.dbg_var_ptr => try self.airDbgVarPtr(inst),
.dbg_var_val => try self.airDbgVarVal(inst, false),
.dbg_arg_inline => try self.airDbgVarVal(inst, true),
@ -5210,10 +5236,52 @@ pub const FuncGen = struct {
.work_item_id => try self.airWorkItemId(inst),
.work_group_size => try self.airWorkGroupSize(inst),
.work_group_id => try self.airWorkGroupId(inst),
// Instructions that are known to always be `noreturn` based on their tag.
.br => return self.airBr(inst),
.repeat => return self.airRepeat(inst),
.switch_dispatch => return self.airSwitchDispatch(inst),
.cond_br => return self.airCondBr(inst),
.switch_br => return self.airSwitchBr(inst, false),
.loop_switch_br => return self.airSwitchBr(inst, true),
.loop => return self.airLoop(inst),
.ret => return self.airRet(inst, false),
.ret_safe => return self.airRet(inst, true),
.ret_load => return self.airRetLoad(inst),
.trap => return self.airTrap(inst),
.unreach => return self.airUnreach(inst),
// Instructions which may be `noreturn`.
.block => res: {
const res = try self.airBlock(inst);
if (self.typeOfIndex(inst).isNoReturn(zcu)) return;
break :res res;
},
.dbg_inline_block => res: {
const res = try self.airDbgInlineBlock(inst);
if (self.typeOfIndex(inst).isNoReturn(zcu)) return;
break :res res;
},
.call, .call_always_tail, .call_never_tail, .call_never_inline => |tag| res: {
const res = try self.airCall(inst, switch (tag) {
.call => .auto,
.call_always_tail => .always_tail,
.call_never_tail => .never_tail,
.call_never_inline => .never_inline,
else => unreachable,
});
// TODO: the AIR we emit for calls is a bit weird - the instruction has
// type `noreturn`, but there are instructions (and maybe a safety check) following
// nonetheless. The `unreachable` or safety check should be emitted by backends instead.
//if (self.typeOfIndex(inst).isNoReturn(mod)) return;
break :res res;
},
// zig fmt: on
};
if (val != .none) try self.func_inst_table.putNoClobber(self.gpa, inst.toRef(), val);
}
unreachable;
}
fn genBodyDebugScope(
@ -5659,7 +5727,7 @@ pub const FuncGen = struct {
_ = try fg.wip.@"unreachable"();
}
fn airRet(self: *FuncGen, inst: Air.Inst.Index, safety: bool) !Builder.Value {
fn airRet(self: *FuncGen, inst: Air.Inst.Index, safety: bool) !void {
const o = self.ng.object;
const pt = o.pt;
const zcu = pt.zcu;
@ -5694,7 +5762,7 @@ pub const FuncGen = struct {
try self.valgrindMarkUndef(self.ret_ptr, len);
}
_ = try self.wip.retVoid();
return .none;
return;
}
const unwrapped_operand = operand.unwrap();
@ -5703,12 +5771,12 @@ pub const FuncGen = struct {
// Return value was stored previously
if (unwrapped_operand == .instruction and unwrapped_ret == .instruction and unwrapped_operand.instruction == unwrapped_ret.instruction) {
_ = try self.wip.retVoid();
return .none;
return;
}
try self.store(self.ret_ptr, ptr_ty, operand, .none);
_ = try self.wip.retVoid();
return .none;
return;
}
const fn_info = zcu.typeToFunc(Type.fromInterned(ip.getNav(self.ng.nav_index).typeOf(ip))).?;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
@ -5720,7 +5788,7 @@ pub const FuncGen = struct {
} else {
_ = try self.wip.retVoid();
}
return .none;
return;
}
const abi_ret_ty = try lowerFnRetTy(o, fn_info);
@ -5744,29 +5812,29 @@ pub const FuncGen = struct {
try self.valgrindMarkUndef(rp, len);
}
_ = try self.wip.ret(try self.wip.load(.normal, abi_ret_ty, rp, alignment, ""));
return .none;
return;
}
if (isByRef(ret_ty, zcu)) {
// operand is a pointer however self.ret_ptr is null so that means
// we need to return a value.
_ = try self.wip.ret(try self.wip.load(.normal, abi_ret_ty, operand, alignment, ""));
return .none;
return;
}
const llvm_ret_ty = operand.typeOfWip(&self.wip);
if (abi_ret_ty == llvm_ret_ty) {
_ = try self.wip.ret(operand);
return .none;
return;
}
const rp = try self.buildAlloca(llvm_ret_ty, alignment);
_ = try self.wip.store(.normal, operand, rp, alignment);
_ = try self.wip.ret(try self.wip.load(.normal, abi_ret_ty, rp, alignment, ""));
return .none;
return;
}
fn airRetLoad(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
fn airRetLoad(self: *FuncGen, inst: Air.Inst.Index) !void {
const o = self.ng.object;
const pt = o.pt;
const zcu = pt.zcu;
@ -5784,17 +5852,17 @@ pub const FuncGen = struct {
} else {
_ = try self.wip.retVoid();
}
return .none;
return;
}
if (self.ret_ptr != .none) {
_ = try self.wip.retVoid();
return .none;
return;
}
const ptr = try self.resolveInst(un_op);
const abi_ret_ty = try lowerFnRetTy(o, fn_info);
const alignment = ret_ty.abiAlignment(zcu).toLlvm();
_ = try self.wip.ret(try self.wip.load(.normal, abi_ret_ty, ptr, alignment, ""));
return .none;
return;
}
fn airCVaArg(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
@ -6058,7 +6126,7 @@ pub const FuncGen = struct {
}
}
fn airBr(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
fn airBr(self: *FuncGen, inst: Air.Inst.Index) !void {
const o = self.ng.object;
const zcu = o.pt.zcu;
const branch = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
@ -6074,10 +6142,212 @@ pub const FuncGen = struct {
try block.breaks.list.append(self.gpa, .{ .bb = self.wip.cursor.block, .val = val });
} else block.breaks.len += 1;
_ = try self.wip.br(block.parent_bb);
return .none;
}
fn airCondBr(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
fn airRepeat(self: *FuncGen, inst: Air.Inst.Index) !void {
const repeat = self.air.instructions.items(.data)[@intFromEnum(inst)].repeat;
const loop_bb = self.loops.get(repeat.loop_inst).?;
loop_bb.ptr(&self.wip).incoming += 1;
_ = try self.wip.br(loop_bb);
}
fn lowerSwitchDispatch(
self: *FuncGen,
switch_inst: Air.Inst.Index,
cond_ref: Air.Inst.Ref,
dispatch_info: SwitchDispatchInfo,
) !void {
const o = self.ng.object;
const pt = o.pt;
const zcu = pt.zcu;
const cond_ty = self.typeOf(cond_ref);
const switch_br = self.air.unwrapSwitch(switch_inst);
if (try self.air.value(cond_ref, pt)) |cond_val| {
// Comptime-known dispatch. Iterate the cases to find the correct
// one, and branch to the corresponding element of `case_blocks`.
var it = switch_br.iterateCases();
const target_case_idx = target: while (it.next()) |case| {
for (case.items) |item| {
const val = Value.fromInterned(item.toInterned().?);
if (cond_val.compareHetero(.eq, val, zcu)) break :target case.idx;
}
for (case.ranges) |range| {
const low = Value.fromInterned(range[0].toInterned().?);
const high = Value.fromInterned(range[1].toInterned().?);
if (cond_val.compareHetero(.gte, low, zcu) and
cond_val.compareHetero(.lte, high, zcu))
{
break :target case.idx;
}
}
} else dispatch_info.case_blocks.len - 1;
const target_block = dispatch_info.case_blocks[target_case_idx];
target_block.ptr(&self.wip).incoming += 1;
_ = try self.wip.br(target_block);
return;
}
// Runtime-known dispatch.
const cond = try self.resolveInst(cond_ref);
if (dispatch_info.jmp_table) |jmp_table| {
// We should use the constructed jump table.
// First, check the bounds to branch to the `else` case if needed.
const inbounds = try self.wip.bin(
.@"and",
try self.cmp(.normal, .gte, cond_ty, cond, jmp_table.min.toValue()),
try self.cmp(.normal, .lte, cond_ty, cond, jmp_table.max.toValue()),
"",
);
const jmp_table_block = try self.wip.block(1, "Then");
const else_block = dispatch_info.case_blocks[dispatch_info.case_blocks.len - 1];
else_block.ptr(&self.wip).incoming += 1;
_ = try self.wip.brCond(inbounds, jmp_table_block, else_block, switch (jmp_table.in_bounds_hint) {
.none => .none,
.unpredictable => .unpredictable,
.likely => .then_likely,
.unlikely => .else_likely,
});
self.wip.cursor = .{ .block = jmp_table_block };
// Figure out the list of blocks we might branch to.
// This includes all case blocks, but it might not include the `else` block if
// the table is dense.
const target_blocks_len = dispatch_info.case_blocks.len - @intFromBool(!jmp_table.table_includes_else);
const target_blocks = dispatch_info.case_blocks[0..target_blocks_len];
// Make sure to cast the index to a usize so it's not treated as negative!
const table_index = try self.wip.cast(
.zext,
try self.wip.bin(.@"sub nuw", cond, jmp_table.min.toValue(), ""),
try o.lowerType(Type.usize),
"",
);
const target_ptr_ptr = try self.wip.gep(
.inbounds,
.ptr,
jmp_table.table.toValue(),
&.{table_index},
"",
);
const target_ptr = try self.wip.load(.normal, .ptr, target_ptr_ptr, .default, "");
// Do the branch!
_ = try self.wip.indirectbr(target_ptr, target_blocks);
// Mark all target blocks as having one more incoming branch.
for (target_blocks) |case_block| {
case_block.ptr(&self.wip).incoming += 1;
}
return;
}
// We must lower to an actual LLVM `switch` instruction.
// The switch prongs will correspond to our scalar cases. Ranges will
// be handled by conditional branches in the `else` prong.
const llvm_usize = try o.lowerType(Type.usize);
const cond_int = if (cond.typeOfWip(&self.wip).isPointer(&o.builder))
try self.wip.cast(.ptrtoint, cond, llvm_usize, "")
else
cond;
const llvm_cases_len, const last_range_case = info: {
var llvm_cases_len: u32 = 0;
var last_range_case: ?u32 = null;
var it = switch_br.iterateCases();
while (it.next()) |case| {
if (case.ranges.len > 0) last_range_case = case.idx;
llvm_cases_len += @intCast(case.items.len);
}
break :info .{ llvm_cases_len, last_range_case };
};
// The `else` of the LLVM `switch` is the actual `else` prong only
// if there are no ranges. Otherwise, the `else` will have a
// conditional chain before the "true" `else` prong.
const llvm_else_block = if (last_range_case == null)
dispatch_info.case_blocks[dispatch_info.case_blocks.len - 1]
else
try self.wip.block(0, "RangeTest");
llvm_else_block.ptr(&self.wip).incoming += 1;
var wip_switch = try self.wip.@"switch"(cond_int, llvm_else_block, llvm_cases_len, dispatch_info.switch_weights);
defer wip_switch.finish(&self.wip);
// Construct the actual cases. Set the cursor to the `else` block so
// we can construct ranges at the same time as scalar cases.
self.wip.cursor = .{ .block = llvm_else_block };
var it = switch_br.iterateCases();
while (it.next()) |case| {
const case_block = dispatch_info.case_blocks[case.idx];
for (case.items) |item| {
const llvm_item = (try self.resolveInst(item)).toConst().?;
const llvm_int_item = if (llvm_item.typeOf(&o.builder).isPointer(&o.builder))
try o.builder.castConst(.ptrtoint, llvm_item, llvm_usize)
else
llvm_item;
try wip_switch.addCase(llvm_int_item, case_block, &self.wip);
}
case_block.ptr(&self.wip).incoming += @intCast(case.items.len);
if (case.ranges.len == 0) continue;
// Add a conditional for the ranges, directing to the relevant bb.
// We don't need to consider `cold` branch hints since that information is stored
// in the target bb body, but we do care about likely/unlikely/unpredictable.
const hint = switch_br.getHint(case.idx);
var range_cond: ?Builder.Value = null;
for (case.ranges) |range| {
const llvm_min = try self.resolveInst(range[0]);
const llvm_max = try self.resolveInst(range[1]);
const cond_part = try self.wip.bin(
.@"and",
try self.cmp(.normal, .gte, cond_ty, cond, llvm_min),
try self.cmp(.normal, .lte, cond_ty, cond, llvm_max),
"",
);
if (range_cond) |prev| {
range_cond = try self.wip.bin(.@"or", prev, cond_part, "");
} else range_cond = cond_part;
}
// If the check fails, we either branch to the "true" `else` case,
// or to the next range condition.
const range_else_block = if (case.idx == last_range_case.?)
dispatch_info.case_blocks[dispatch_info.case_blocks.len - 1]
else
try self.wip.block(0, "RangeTest");
_ = try self.wip.brCond(range_cond.?, case_block, range_else_block, switch (hint) {
.none, .cold => .none,
.unpredictable => .unpredictable,
.likely => .then_likely,
.unlikely => .else_likely,
});
case_block.ptr(&self.wip).incoming += 1;
range_else_block.ptr(&self.wip).incoming += 1;
// Construct the next range conditional (if any) in the false branch.
self.wip.cursor = .{ .block = range_else_block };
}
}
fn airSwitchDispatch(self: *FuncGen, inst: Air.Inst.Index) !void {
const br = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
const dispatch_info = self.switch_dispatch_info.get(br.block_inst).?;
return self.lowerSwitchDispatch(br.block_inst, br.operand, dispatch_info);
}
fn airCondBr(self: *FuncGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const cond = try self.resolveInst(pl_op.operand);
const extra = self.air.extraData(Air.CondBr, pl_op.payload);
@ -6136,7 +6406,6 @@ pub const FuncGen = struct {
try self.genBodyDebugScope(null, else_body, extra.data.branch_hints.else_cov);
// No need to reset the insert cursor since this instruction is noreturn.
return .none;
}
fn airTry(self: *FuncGen, body_tail: []const Air.Inst.Index, err_cold: bool) !Builder.Value {
@ -6242,28 +6511,123 @@ pub const FuncGen = struct {
return fg.wip.extractValue(err_union, &.{offset}, "");
}
fn airSwitchBr(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
fn airSwitchBr(self: *FuncGen, inst: Air.Inst.Index, is_dispatch_loop: bool) !void {
const o = self.ng.object;
const zcu = o.pt.zcu;
const switch_br = self.air.unwrapSwitch(inst);
const cond = try self.resolveInst(switch_br.operand);
// For `loop_switch_br`, we need these BBs prepared ahead of time to generate dispatches.
// For `switch_br`, they allow us to sometimes generate better IR by sharing a BB between
// scalar and range cases in the same prong.
// +1 for `else` case. This is not the same as the LLVM `else` prong, as that may first contain
// conditionals to handle ranges.
const case_blocks = try self.gpa.alloc(Builder.Function.Block.Index, switch_br.cases_len + 1);
defer self.gpa.free(case_blocks);
// We set incoming as 0 for now, and increment it as we construct dispatches.
for (case_blocks[0 .. case_blocks.len - 1]) |*b| b.* = try self.wip.block(0, "Case");
case_blocks[case_blocks.len - 1] = try self.wip.block(0, "Default");
const else_block = try self.wip.block(1, "Default");
const llvm_usize = try o.lowerType(Type.usize);
const cond_int = if (cond.typeOfWip(&self.wip).isPointer(&o.builder))
try self.wip.cast(.ptrtoint, cond, llvm_usize, "")
else
cond;
// There's a special case here to manually generate a jump table in some cases.
//
// Labeled switch in Zig is intended to follow the "direct threading" pattern. We would ideally use a jump
// table, and each `continue` has its own indirect `jmp`, to allow the branch predictor to more accurately
// use data patterns to predict future dispatches. The problem, however, is that LLVM emits fascinatingly
// bad asm for this. Not only does it not share the jump table -- which we really need it to do to prevent
// destroying the cache -- but it also actually generates slightly different jump tables for each case,
// and *a separate conditional branch beforehand* to handle dispatching back to the case we're currently
// within(!!).
//
// This asm is really, really, not what we want. As such, we will construct the jump table manually where
// appropriate (the values are dense and relatively few), and use it when lowering dispatches.
const llvm_cases_len = llvm_cases_len: {
var len: u32 = 0;
const jmp_table: ?SwitchDispatchInfo.JmpTable = jmp_table: {
if (!is_dispatch_loop) break :jmp_table null;
// On a 64-bit target, 1024 pointers in our jump table is about 8K of pointers. This seems just
// about acceptable - it won't fill L1d cache on most CPUs.
const max_table_len = 1024;
const cond_ty = self.typeOf(switch_br.operand);
switch (cond_ty.zigTypeTag(zcu)) {
.bool, .pointer => break :jmp_table null,
.@"enum", .int, .error_set => {},
else => unreachable,
}
if (cond_ty.intInfo(zcu).signedness == .signed) break :jmp_table null;
// Don't worry about the size of the type -- it's irrelevant, because the prong values could be fairly dense.
// If they are, then we will construct a jump table.
const min, const max = self.switchCaseItemRange(switch_br);
const min_int = min.getUnsignedInt(zcu) orelse break :jmp_table null;
const max_int = max.getUnsignedInt(zcu) orelse break :jmp_table null;
const table_len = max_int - min_int + 1;
if (table_len > max_table_len) break :jmp_table null;
const table_elems = try self.gpa.alloc(Builder.Constant, @intCast(table_len));
defer self.gpa.free(table_elems);
// Set them all to the `else` branch, then iterate over the AIR switch
// and replace all values which correspond to other prongs.
@memset(table_elems, try o.builder.blockAddrConst(
self.wip.function,
case_blocks[case_blocks.len - 1],
));
var item_count: u32 = 0;
var it = switch_br.iterateCases();
while (it.next()) |case| len += @intCast(case.items.len);
break :llvm_cases_len len;
while (it.next()) |case| {
const case_block = case_blocks[case.idx];
const case_block_addr = try o.builder.blockAddrConst(
self.wip.function,
case_block,
);
for (case.items) |item| {
const val = Value.fromInterned(item.toInterned().?);
const table_idx = val.toUnsignedInt(zcu) - min_int;
table_elems[@intCast(table_idx)] = case_block_addr;
item_count += 1;
}
for (case.ranges) |range| {
const low = Value.fromInterned(range[0].toInterned().?);
const high = Value.fromInterned(range[1].toInterned().?);
const low_idx = low.toUnsignedInt(zcu) - min_int;
const high_idx = high.toUnsignedInt(zcu) - min_int;
@memset(table_elems[@intCast(low_idx)..@intCast(high_idx + 1)], case_block_addr);
item_count += @intCast(high_idx + 1 - low_idx);
}
}
const table_llvm_ty = try o.builder.arrayType(table_elems.len, .ptr);
const table_val = try o.builder.arrayConst(table_llvm_ty, table_elems);
const table_variable = try o.builder.addVariable(
try o.builder.strtabStringFmt("__jmptab_{d}", .{@intFromEnum(inst)}),
table_llvm_ty,
.default,
);
try table_variable.setInitializer(table_val, &o.builder);
table_variable.setLinkage(.internal, &o.builder);
table_variable.setUnnamedAddr(.unnamed_addr, &o.builder);
const table_includes_else = item_count != table_len;
break :jmp_table .{
.min = try o.lowerValue(min.toIntern()),
.max = try o.lowerValue(max.toIntern()),
.in_bounds_hint = if (table_includes_else) .none else switch (switch_br.getElseHint()) {
.none, .cold => .none,
.unpredictable => .unpredictable,
.likely => .likely,
.unlikely => .unlikely,
},
.table = table_variable.toConst(&o.builder),
.table_includes_else = table_includes_else,
};
};
const weights: Builder.Function.Instruction.BrCond.Weights = weights: {
if (jmp_table != null) break :weights .none; // not used
// First pass. If any weights are `.unpredictable`, unpredictable.
// If all are `.none` or `.cold`, none.
var any_likely = false;
@ -6281,6 +6645,13 @@ pub const FuncGen = struct {
}
if (!any_likely) break :weights .none;
const llvm_cases_len = llvm_cases_len: {
var len: u32 = 0;
var it = switch_br.iterateCases();
while (it.next()) |case| len += @intCast(case.items.len);
break :llvm_cases_len len;
};
var weights = try self.gpa.alloc(Builder.Metadata, llvm_cases_len + 1);
defer self.gpa.free(weights);
@ -6313,60 +6684,80 @@ pub const FuncGen = struct {
break :weights @enumFromInt(@intFromEnum(tuple));
};
var wip_switch = try self.wip.@"switch"(cond_int, else_block, llvm_cases_len, weights);
defer wip_switch.finish(&self.wip);
const dispatch_info: SwitchDispatchInfo = .{
.case_blocks = case_blocks,
.switch_weights = weights,
.jmp_table = jmp_table,
};
if (is_dispatch_loop) {
try self.switch_dispatch_info.putNoClobber(self.gpa, inst, dispatch_info);
}
defer if (is_dispatch_loop) {
assert(self.switch_dispatch_info.remove(inst));
};
// Generate the initial dispatch.
// If this is a simple `switch_br`, this is the only dispatch.
try self.lowerSwitchDispatch(inst, switch_br.operand, dispatch_info);
// Iterate the cases and generate their bodies.
var it = switch_br.iterateCases();
while (it.next()) |case| {
const case_block = try self.wip.block(@intCast(case.items.len), "Case");
for (case.items) |item| {
const llvm_item = (try self.resolveInst(item)).toConst().?;
const llvm_int_item = if (llvm_item.typeOf(&o.builder).isPointer(&o.builder))
try o.builder.castConst(.ptrtoint, llvm_item, llvm_usize)
else
llvm_item;
try wip_switch.addCase(llvm_int_item, case_block, &self.wip);
}
const case_block = case_blocks[case.idx];
self.wip.cursor = .{ .block = case_block };
if (switch_br.getHint(case.idx) == .cold) _ = try self.wip.callIntrinsicAssumeCold();
try self.genBodyDebugScope(null, case.body, .poi);
try self.genBodyDebugScope(null, case.body, .none);
}
self.wip.cursor = .{ .block = case_blocks[case_blocks.len - 1] };
const else_body = it.elseBody();
self.wip.cursor = .{ .block = else_block };
if (switch_br.getElseHint() == .cold) _ = try self.wip.callIntrinsicAssumeCold();
if (else_body.len != 0) {
try self.genBodyDebugScope(null, else_body, .poi);
if (else_body.len > 0) {
try self.genBodyDebugScope(null, it.elseBody(), .none);
} else {
_ = try self.wip.@"unreachable"();
}
// No need to reset the insert cursor since this instruction is noreturn.
return .none;
}
fn airLoop(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
const o = self.ng.object;
const zcu = o.pt.zcu;
fn switchCaseItemRange(self: *FuncGen, switch_br: Air.UnwrappedSwitch) [2]Value {
const zcu = self.ng.object.pt.zcu;
var it = switch_br.iterateCases();
var min: ?Value = null;
var max: ?Value = null;
while (it.next()) |case| {
for (case.items) |item| {
const val = Value.fromInterned(item.toInterned().?);
const low = if (min) |m| val.compareHetero(.lt, m, zcu) else true;
const high = if (max) |m| val.compareHetero(.gt, m, zcu) else true;
if (low) min = val;
if (high) max = val;
}
for (case.ranges) |range| {
const vals: [2]Value = .{
Value.fromInterned(range[0].toInterned().?),
Value.fromInterned(range[1].toInterned().?),
};
const low = if (min) |m| vals[0].compareHetero(.lt, m, zcu) else true;
const high = if (max) |m| vals[1].compareHetero(.gt, m, zcu) else true;
if (low) min = vals[0];
if (high) max = vals[1];
}
}
return .{ min.?, max.? };
}
fn airLoop(self: *FuncGen, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[loop.end..][0..loop.data.body_len]);
const loop_block = try self.wip.block(2, "Loop");
const loop_block = try self.wip.block(1, "Loop"); // `airRepeat` will increment incoming each time
_ = try self.wip.br(loop_block);
try self.loops.putNoClobber(self.gpa, inst, loop_block);
defer assert(self.loops.remove(inst));
self.wip.cursor = .{ .block = loop_block };
try self.genBodyDebugScope(null, body, .none);
// TODO instead of this logic, change AIR to have the property that
// every block is guaranteed to end with a noreturn instruction.
// Then we can simply rely on the fact that a repeat or break instruction
// would have been emitted already. Also the main loop in genBody can
// be while(true) instead of for(body), which will eliminate 1 branch on
// a hot path.
if (body.len == 0 or !self.typeOfIndex(body[body.len - 1]).isNoReturn(zcu)) {
_ = try self.wip.br(loop_block);
}
return .none;
}
fn airArrayToSlice(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
@ -6861,10 +7252,9 @@ pub const FuncGen = struct {
return self.wip.not(operand, "");
}
fn airUnreach(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
fn airUnreach(self: *FuncGen, inst: Air.Inst.Index) !void {
_ = inst;
_ = try self.wip.@"unreachable"();
return .none;
}
fn airDbgStmt(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
@ -9267,11 +9657,10 @@ pub const FuncGen = struct {
return fg.load(ptr, ptr_ty);
}
fn airTrap(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {
fn airTrap(self: *FuncGen, inst: Air.Inst.Index) !void {
_ = inst;
_ = try self.wip.callIntrinsic(.normal, .none, .trap, &.{}, &.{}, "");
_ = try self.wip.@"unreachable"();
return .none;
}
fn airBreakpoint(self: *FuncGen, inst: Air.Inst.Index) !Builder.Value {

View File

@ -4157,6 +4157,7 @@ pub const Function = struct {
@"icmp ugt",
@"icmp ule",
@"icmp ult",
indirectbr,
insertelement,
insertvalue,
inttoptr,
@ -4367,6 +4368,7 @@ pub const Function = struct {
return switch (wip.instructions.items(.tag)[@intFromEnum(self)]) {
.br,
.br_cond,
.indirectbr,
.ret,
.@"ret void",
.@"switch",
@ -4381,6 +4383,7 @@ pub const Function = struct {
.br,
.br_cond,
.fence,
.indirectbr,
.ret,
.@"ret void",
.store,
@ -4471,6 +4474,7 @@ pub const Function = struct {
.br,
.br_cond,
.fence,
.indirectbr,
.ret,
.@"ret void",
.store,
@ -4657,6 +4661,7 @@ pub const Function = struct {
.br,
.br_cond,
.fence,
.indirectbr,
.ret,
.@"ret void",
.store,
@ -4837,6 +4842,12 @@ pub const Function = struct {
//case_blocks: [cases_len]Block.Index,
};
pub const IndirectBr = struct {
addr: Value,
targets_len: u32,
//targets: [targets_len]Block.Index,
};
pub const Binary = struct {
lhs: Value,
rhs: Value,
@ -5294,10 +5305,27 @@ pub const WipFunction = struct {
return .{ .index = 0, .instruction = instruction };
}
pub fn indirectbr(
self: *WipFunction,
addr: Value,
targets: []const Block.Index,
) Allocator.Error!Instruction.Index {
try self.ensureUnusedExtraCapacity(1, Instruction.IndirectBr, targets.len);
const instruction = try self.addInst(null, .{
.tag = .indirectbr,
.data = self.addExtraAssumeCapacity(Instruction.IndirectBr{
.addr = addr,
.targets_len = @intCast(targets.len),
}),
});
_ = self.extra.appendSliceAssumeCapacity(@ptrCast(targets));
for (targets) |target| target.ptr(self).branches += 1;
return instruction;
}
pub fn @"unreachable"(self: *WipFunction) Allocator.Error!Instruction.Index {
try self.ensureUnusedExtraCapacity(1, NoExtra, 0);
const instruction = try self.addInst(null, .{ .tag = .@"unreachable", .data = undefined });
return instruction;
return try self.addInst(null, .{ .tag = .@"unreachable", .data = undefined });
}
pub fn un(
@ -6299,8 +6327,7 @@ pub const WipFunction = struct {
});
names[@intFromEnum(new_block_index)] = try wip_name.map(current_block.name, "");
for (current_block.instructions.items) |old_instruction_index| {
const new_instruction_index: Instruction.Index =
@enumFromInt(function.instructions.len);
const new_instruction_index: Instruction.Index = @enumFromInt(function.instructions.len);
var instruction = self.instructions.get(@intFromEnum(old_instruction_index));
switch (instruction.tag) {
.add,
@ -6509,6 +6536,15 @@ pub const WipFunction = struct {
});
wip_extra.appendMappedValues(indices, instructions);
},
.indirectbr => {
var extra = self.extraDataTrail(Instruction.IndirectBr, instruction.data);
const targets = extra.trail.next(extra.data.targets_len, Block.Index, self);
instruction.data = wip_extra.addExtra(Instruction.IndirectBr{
.addr = instructions.map(extra.data.addr),
.targets_len = extra.data.targets_len,
});
wip_extra.appendSlice(targets);
},
.insertelement => {
const extra = self.extraData(Instruction.InsertElement, instruction.data);
instruction.data = wip_extra.addExtra(Instruction.InsertElement{
@ -7555,10 +7591,10 @@ pub const Constant = enum(u32) {
.blockaddress => |tag| {
const extra = data.builder.constantExtraData(BlockAddress, item.data);
const function = extra.function.ptrConst(data.builder);
try writer.print("{s}({}, %{d})", .{
try writer.print("{s}({}, {})", .{
@tagName(tag),
function.global.fmt(data.builder),
@intFromEnum(extra.block), // TODO
extra.block.toInst(function).fmt(extra.function, data.builder),
});
},
.dso_local_equivalent,
@ -9902,6 +9938,23 @@ pub fn printUnbuffered(
index.fmt(function_index, self),
});
},
.indirectbr => |tag| {
var extra =
function.extraDataTrail(Function.Instruction.IndirectBr, instruction.data);
const targets =
extra.trail.next(extra.data.targets_len, Function.Block.Index, &function);
try writer.print(" {s} {%}, [", .{
@tagName(tag),
extra.data.addr.fmt(function_index, self),
});
for (0.., targets) |target_index, target| {
if (target_index > 0) try writer.writeAll(", ");
try writer.print("{%}", .{
target.toInst(&function).fmt(function_index, self),
});
}
try writer.writeByte(']');
},
.insertelement => |tag| {
const extra =
function.extraData(Function.Instruction.InsertElement, instruction.data);
@ -14775,15 +14828,6 @@ pub fn toBitcode(self: *Builder, allocator: Allocator) bitcode_writer.Error![]co
.indices = indices,
});
},
.insertvalue => {
var extra = func.extraDataTrail(Function.Instruction.InsertValue, data);
const indices = extra.trail.next(extra.data.indices_len, u32, &func);
try function_block.writeAbbrev(FunctionBlock.InsertValue{
.val = adapter.getOffsetValueIndex(extra.data.val),
.elem = adapter.getOffsetValueIndex(extra.data.elem),
.indices = indices,
});
},
.extractelement => {
const extra = func.extraData(Function.Instruction.ExtractElement, data);
try function_block.writeAbbrev(FunctionBlock.ExtractElement{
@ -14791,6 +14835,20 @@ pub fn toBitcode(self: *Builder, allocator: Allocator) bitcode_writer.Error![]co
.index = adapter.getOffsetValueIndex(extra.index),
});
},
.indirectbr => {
var extra =
func.extraDataTrail(Function.Instruction.IndirectBr, datas[instr_index]);
const targets =
extra.trail.next(extra.data.targets_len, Function.Block.Index, &func);
try function_block.writeAbbrevAdapted(
FunctionBlock.IndirectBr{
.ty = extra.data.addr.typeOf(@enumFromInt(func_index), self),
.addr = extra.data.addr,
.targets = targets,
},
adapter,
);
},
.insertelement => {
const extra = func.extraData(Function.Instruction.InsertElement, data);
try function_block.writeAbbrev(FunctionBlock.InsertElement{
@ -14799,6 +14857,15 @@ pub fn toBitcode(self: *Builder, allocator: Allocator) bitcode_writer.Error![]co
.index = adapter.getOffsetValueIndex(extra.index),
});
},
.insertvalue => {
var extra = func.extraDataTrail(Function.Instruction.InsertValue, datas[instr_index]);
const indices = extra.trail.next(extra.data.indices_len, u32, &func);
try function_block.writeAbbrev(FunctionBlock.InsertValue{
.val = adapter.getOffsetValueIndex(extra.data.val),
.elem = adapter.getOffsetValueIndex(extra.data.elem),
.indices = indices,
});
},
.select => {
const extra = func.extraData(Function.Instruction.Select, data);
try function_block.writeAbbrev(FunctionBlock.Select{

View File

@ -19,6 +19,7 @@ const LineAbbrev = AbbrevOp{ .vbr = 8 };
const ColumnAbbrev = AbbrevOp{ .vbr = 8 };
const BlockAbbrev = AbbrevOp{ .vbr = 6 };
const BlockArrayAbbrev = AbbrevOp{ .array_vbr = 6 };
/// Unused tags are commented out so that they are omitted in the generated
/// bitcode, which scans over this enum using reflection.
@ -1294,6 +1295,7 @@ pub const FunctionBlock = struct {
DebugLoc,
DebugLocAgain,
ColdOperandBundle,
IndirectBr,
};
pub const DeclareBlocks = struct {
@ -1813,6 +1815,18 @@ pub const FunctionBlock = struct {
.{ .literal = 0 },
};
};
pub const IndirectBr = struct {
pub const ops = [_]AbbrevOp{
.{ .literal = 31 },
.{ .fixed_runtime = Builder.Type },
ValueAbbrev,
BlockArrayAbbrev,
};
ty: Builder.Type,
addr: Builder.Value,
targets: []const Builder.Function.Block.Index,
};
};
pub const FunctionValueSymbolTable = struct {

View File

@ -3340,6 +3340,7 @@ const NavGen = struct {
.store, .store_safe => return self.airStore(inst),
.br => return self.airBr(inst),
.repeat => return self.fail("TODO implement `repeat`", .{}),
.breakpoint => return,
.cond_br => return self.airCondBr(inst),
.loop => return self.airLoop(inst),
@ -6211,6 +6212,7 @@ const NavGen = struct {
var num_conditions: u32 = 0;
var it = switch_br.iterateCases();
while (it.next()) |case| {
if (case.ranges.len > 0) return self.todo("switch with ranges", .{});
num_conditions += @intCast(case.items.len);
}
break :blk num_conditions;

View File

@ -296,10 +296,12 @@ const Writer = struct {
.aggregate_init => try w.writeAggregateInit(s, inst),
.union_init => try w.writeUnionInit(s, inst),
.br => try w.writeBr(s, inst),
.switch_dispatch => try w.writeBr(s, inst),
.repeat => try w.writeRepeat(s, inst),
.cond_br => try w.writeCondBr(s, inst),
.@"try", .try_cold => try w.writeTry(s, inst),
.try_ptr, .try_ptr_cold => try w.writeTryPtr(s, inst),
.switch_br => try w.writeSwitchBr(s, inst),
.loop_switch_br, .switch_br => try w.writeSwitchBr(s, inst),
.cmpxchg_weak, .cmpxchg_strong => try w.writeCmpxchg(s, inst),
.fence => try w.writeFence(s, inst),
.atomic_load => try w.writeAtomicLoad(s, inst),
@ -708,6 +710,11 @@ const Writer = struct {
try w.writeOperand(s, inst, 0, br.operand);
}
fn writeRepeat(w: *Writer, s: anytype, inst: Air.Inst.Index) @TypeOf(s).Error!void {
const repeat = w.air.instructions.items(.data)[@intFromEnum(inst)].repeat;
try w.writeInstIndex(s, repeat.loop_inst, false);
}
fn writeTry(w: *Writer, s: anytype, inst: Air.Inst.Index) @TypeOf(s).Error!void {
const pl_op = w.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
const extra = w.air.extraData(Air.Try, pl_op.payload);
@ -864,6 +871,12 @@ const Writer = struct {
if (item_i != 0) try s.writeAll(", ");
try w.writeInstRef(s, item, false);
}
for (case.ranges, 0..) |range, range_i| {
if (range_i != 0 or case.items.len != 0) try s.writeAll(", ");
try w.writeInstRef(s, range[0], false);
try s.writeAll("...");
try w.writeInstRef(s, range[1], false);
}
try s.writeAll("] ");
const hint = switch_br.getHint(case.idx);
if (hint != .none) {

View File

@ -304,6 +304,7 @@ const Writer = struct {
.@"break",
.break_inline,
.switch_continue,
=> try self.writeBreak(stream, inst),
.slice_start => try self.writeSliceStart(stream, inst),

View File

@ -89,6 +89,7 @@ test {
_ = @import("behavior/struct_contains_null_ptr_itself.zig");
_ = @import("behavior/struct_contains_slice_of_itself.zig");
_ = @import("behavior/switch.zig");
_ = @import("behavior/switch_loop.zig");
_ = @import("behavior/switch_prong_err_enum.zig");
_ = @import("behavior/switch_prong_implicit_cast.zig");
_ = @import("behavior/switch_on_captured_error.zig");

View File

@ -961,3 +961,27 @@ test "block error return trace index is reset between prongs" {
};
try result;
}
test "labeled switch with break" {
var six: u32 = undefined;
six = 6;
const val = s: switch (six) {
0...4 => break :s false,
5 => break :s false,
6...7 => break :s true,
else => break :s false,
};
try expect(val);
// Make sure the switch is implicitly comptime!
const comptime_val = s: switch (@as(u32, 6)) {
0...4 => break :s false,
5 => break :s false,
6...7 => break :s true,
else => break :s false,
};
comptime assert(comptime_val);
}

View File

@ -0,0 +1,200 @@
const builtin = @import("builtin");
const std = @import("std");
const expect = std.testing.expect;
test "simple switch loop" {
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var start: u32 = undefined;
start = 32;
const result: u32 = s: switch (start) {
0 => 0,
1 => 1,
2 => 2,
3 => 3,
else => |x| continue :s x / 2,
};
try expect(result == 2);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "switch loop with ranges" {
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest; // TODO
const S = struct {
fn doTheTest() !void {
var start: u32 = undefined;
start = 32;
const result = s: switch (start) {
0...3 => |x| x,
else => |x| continue :s x / 2,
};
try expect(result == 2);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "switch loop on enum" {
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest; // TODO
const S = struct {
const E = enum { a, b, c };
fn doTheTest() !void {
var start: E = undefined;
start = .a;
const result: u32 = s: switch (start) {
.a => continue :s .b,
.b => continue :s .c,
.c => 123,
};
try expect(result == 123);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "switch loop on tagged union" {
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_riscv64) return error.SkipZigTest;
const S = struct {
const U = union(enum) {
a: u32,
b: f32,
c: f32,
};
fn doTheTest() !void {
var start: U = undefined;
start = .{ .a = 80 };
const result = s: switch (start) {
.a => |x| switch (x) {
0...49 => continue :s .{ .b = @floatFromInt(x) },
50 => continue :s .{ .c = @floatFromInt(x) },
else => continue :s .{ .a = x / 2 },
},
.b => |x| x,
.c => return error.TestFailed,
};
try expect(result == 40.0);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "switch loop dispatching instructions" {
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest; // TODO
const S = struct {
const Inst = union(enum) {
set: u32,
add: u32,
sub: u32,
end,
};
fn doTheTest() !void {
var insts: [5]Inst = undefined;
@memcpy(&insts, &[5]Inst{
.{ .set = 123 },
.{ .add = 100 },
.{ .sub = 50 },
.{ .sub = 10 },
.end,
});
var i: u32 = 0;
var cur: u32 = undefined;
eval: switch (insts[0]) {
.set => |x| {
cur = x;
i += 1;
continue :eval insts[i];
},
.add => |x| {
cur += x;
i += 1;
continue :eval insts[i];
},
.sub => |x| {
cur -= x;
i += 1;
continue :eval insts[i];
},
.end => {},
}
try expect(cur == 163);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}
test "switch loop with pointer capture" {
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest; // TODO
const S = struct {
const U = union(enum) {
a: u32,
b: u32,
c: u32,
};
fn doTheTest() !void {
var a: U = .{ .a = 100 };
var b: U = .{ .b = 200 };
var c: U = .{ .c = 300 };
inc: switch (a) {
.a => |*x| {
x.* += 1;
continue :inc b;
},
.b => |*x| {
x.* += 10;
continue :inc c;
},
.c => |*x| {
x.* += 50;
},
}
try expect(a.a == 101);
try expect(b.b == 210);
try expect(c.c == 350);
}
};
try S.doTheTest();
try comptime S.doTheTest();
}

View File

@ -22,6 +22,11 @@ comptime {
comptime {
blk: for (@as([0]void, undefined)) |_| {}
}
comptime {
blk: switch (true) {
else => {},
}
}
// error
// target=native
@ -35,3 +40,4 @@ comptime {
// :17:5: error: unused block label
// :20:5: error: unused while loop label
// :23:5: error: unused for loop label
// :26:5: error: unused switch label