On Windows, `argv` is not populated by start code, and instead left as undefined. This is problematic, and can lead to incorrect programs compiling, but panicking when trying to access `argv`. This change causes these programs to produce a compile error on Windows instead, which is far preferable to a runtime panic.
* update number of type abbrevs to match Elf linker
* update `DebugSymbols` to write symbol and string tables
at the end to match the `MachO` linker
* TODO: update segment vm addresses when growing segments in
the binary
* TODO: store DWARF relocations in linker's interned arena
Previously, `suffix` was copied to `output_buffer` at position
`max_end`, thereby writing into reserved space after `max_end`.
This only worked because `suffix` was not larger than
`bytes_needed_for_esc_codes_at_end` (otherwise there'd be a potential
buffer overrun) and no escape codes at end are actually written.
Since 2d5b2bf1c986d037ef965bf8c9b4d8dfd5967478, escape codes are no
longer written to the end of the buffer. They are now written
exclusively to the front of the buffer.
This allows removing `bytes_needed_for_esc_codes_at_end` and
simplifying the suffix printing logic.
This also fixes the bug that the ellipse suffix was not printed in
Windows terminals because `end.* > max_end` was never true.
In #10859 I moved the `test_node.end()` call after everything else has
been logged. Now the `test_fn.name` is printed by `Progress` itself,
making the additional log obsolete.
The information whether a register is allocated to an instruction is
already encoded in the free_registers "bitmap". Duplicating that
information in the registers map is unnecessary and may lead to
performance degradations.
Implements a cross-platform metadata API, aiming to reduce unnecessary Unix-dependence of the `std.fs` api. Presently, all OSes beside Windows are treated as Unix; this is likely the best way to treat things by default, instead of explicitly listing each Unix-like OS.
Platform-specific operations are not provided by `File.Metadata`, and instead are to be accessed from `File.Metadata.inner`.
Adds:
- File.setPermissions() : Sets permission of a file according to a `Permissions` struct (not available on WASI)
- File.Permissions : A cross-platform representation of file permissions
- Permissions.readOnly() : Returns whether the file is read-only
- Permissions.setReadOnly() : Sets whether the file is read-only
- Permissions.unixSet() : Sets permissions for a class (UNIX-only)
- Permissions.unixGet() : Checks a permission for a class (UNIX-only)
- Permissions.unixNew() : Returns a new Permissions struct to represent the passed mode (UNIX-only)
- File.Metadata : A cross-platform representation of file metadata
- Metadata.size() : Returns the size of a file
- Metadata.permissions() : Returns a `Permissions` struct, representing permissions on the file
- Metadata.kind() : Returns the `Kind` of the file
- Metadata.accessed() : Returns the time the file was last accessed
- Metadata.modified() : Returns the time the file was last modified
- Metadata.created() : Returns the time the file was created (this is an optional, as the underlying filesystem, or OS may not support this)
Methods of `File.Metadata` are also available for the below, so I won't repeat myself
The below may be used for platform-specific functionality
- File.MetadataUnix : The internal implementation of `File.Metadata` on Unices
- File.MetadataLinux : The internal implementation of `File.Metadata` on Linux
- File.MetadataWindows : The implementation of `File.Metadata` on Windows
Previously the progress displayed the first item as [0/x]. This was
misleading when x is the number of items. The first item should be
displayed as [1/x]
Due to differences in where the output gets emitted in stage1 and stage2,
we were putting the symlink next to the binary rather than in `zig-cache`
directory when building with stage2.
LLVM doesn't support lowering union values, so we have to use unnamed
structs to do it, which means any type that contains a union as an
element, even if it is nested in another type, has to have a mechanism
to detect when it can't be lowered normally and has to resort itself to
an unnamed struct.
This includes arrays.
Comment reproduced here:
Note the following u64 alignments:
x86-linux: 4
x86-windows: 8
LLVM makes x86_fp80 have the following alignment and sizes regardless
of operating system:
x86_64: size=16, align=16
x86: size=12, align=4
However in Zig we override x86-windows to have size=16, align=16
in order for the property to hold that u80 and f80 have the same ABI size.
Fixes "error: destination type 'f80' has size 12 but source type 'u80'
has size 16" when trying to bitcast between f80 and u80 on i386-windows.
Get rid of `std.math.F80Repr`. Instead of trying to match the memory
layout of f80, we treat it as a value, same as the other floating point
types. The functions `make_f80` and `break_f80` are introduced to
compose an f80 value out of its parts, and the inverse operation.
stage2 LLVM backend: fix pointer to zero length array tripping LLVM
assertion. It now checks for when the element type is a zero-bit type
and lowers such thing the same way that pointers to other zero-bit types
are lowered.
Both stage1 and stage2 LLVM backends are adjusted so that f80 is lowered
as x86_fp80 on x86_64 and i386 architectures, and identical to a u80 on
others. LLVM constants are lowered in a less hacky way now that #10860
is fixed, by using the expression `(exp << 64) | fraction` using llvm
constants.
Sema is improved to handle c_longdouble by recursively handling it
correctly for whatever the float bit width is. In both stage1 and
stage2.
* F80Repr extern struct needs no explicit padding; let's match the
target padding.
* stage2: fix lowering of f80 constants.
* stage1: decide ABI size and alignment of f80 based on alignment of
u64. x86 has alignof u64 equal to 4 but arm has it as 8.
* stage2: fix Value.floatReadFromMemory to use F80Repr