zig/lib/std/Progress.zig
Andrew Kelley e1e4de2776 progress progress
Move the mutex into the nodes

Track the whole tree instead of only recently activated node
2024-05-27 20:56:48 -07:00

345 lines
11 KiB
Zig

//! This API is non-allocating, non-fallible, and thread-safe.
//!
//! The tradeoff is that users of this API must provide the storage
//! for each `Progress.Node`.
const std = @import("std");
const builtin = @import("builtin");
const windows = std.os.windows;
const testing = std.testing;
const assert = std.debug.assert;
const Progress = @This();
const posix = std.posix;
/// `null` if the current node (and its children) should
/// not print on update()
terminal: ?std.fs.File,
/// Is this a windows API terminal (note: this is not the same as being run on windows
/// because other terminals exist like MSYS/git-bash)
is_windows_terminal: bool,
/// Whether the terminal supports ANSI escape codes.
supports_ansi_escape_codes: bool,
root: Node,
update_thread: ?std.Thread,
/// Atomically set by SIGWINCH as well as the root done() function.
redraw_event: std.Thread.ResetEvent,
/// Ensure there is only 1 global Progress object.
initialized: bool,
/// Indicates a request to shut down and reset global state.
/// Accessed atomically.
done: bool,
refresh_rate_ns: u64,
initial_delay_ns: u64,
rows: u16,
cols: u16,
/// Accessed only by the update thread.
draw_buffer: []u8,
pub const Options = struct {
/// User-provided buffer with static lifetime.
///
/// Used to store the entire write buffer sent to the terminal. Progress output will be truncated if it
/// cannot fit into this buffer which will look bad but not cause any malfunctions.
///
/// Must be at least 100 bytes.
draw_buffer: []u8,
/// How many nanoseconds between writing updates to the terminal.
refresh_rate_ns: u64 = 50 * std.time.ns_per_ms,
/// How many nanoseconds to keep the output hidden
initial_delay_ns: u64 = 500 * std.time.ns_per_ms,
/// If provided, causes the progress item to have a denominator.
/// 0 means unknown.
estimated_total_items: usize = 0,
root_name: []const u8 = "",
};
/// Represents one unit of progress. Each node can have children nodes, or
/// one can use integers with `update`.
pub const Node = struct {
mutex: std.Thread.Mutex,
/// Links to the parent and child nodes.
parent_list_node: std.DoublyLinkedList(void).Node,
/// Links to the prev and next sibling nodes.
sibling_list_node: std.DoublyLinkedList(void).Node,
name: []const u8,
/// Must be handled atomically to be thread-safe. 0 means null.
unprotected_estimated_total_items: usize,
/// Must be handled atomically to be thread-safe.
unprotected_completed_items: usize,
pub const ListNode = std.DoublyLinkedList(void);
/// Create a new child progress node. Thread-safe.
///
/// It is expected for the memory of the result to be stored in the
/// caller's stack and therefore is required to call `activate` immediately
/// on the result after initializing the memory location and `end` when done.
///
/// Passing 0 for `estimated_total_items` means unknown.
pub fn start(self: *Node, name: []const u8, estimated_total_items: usize) Node {
return .{
.mutex = .{},
.parent_list_node = .{
.prev = &self.parent_list_node,
.next = null,
.data = {},
},
.sibling_list_node = .{ .data = {} },
.name = name,
.unprotected_estimated_total_items = estimated_total_items,
.unprotected_completed_items = 0,
};
}
/// To be called exactly once after `start`.
pub fn activate(n: *Node) void {
const p = n.parent().?;
p.mutex.lock();
defer p.mutex.unlock();
assert(p.parent_list_node.next == null);
p.parent_list_node.next = &n.parent_list_node;
}
/// This is the same as calling `start` and then `end` on the returned `Node`. Thread-safe.
pub fn completeOne(self: *Node) void {
_ = @atomicRmw(usize, &self.unprotected_completed_items, .Add, 1, .monotonic);
}
/// Finish a started `Node`. Thread-safe.
pub fn end(child: *Node) void {
if (child.parent()) |p| {
// Make sure the other thread doesn't access this memory that is
// about to be released.
child.mutex.lock();
const other = if (child.sibling_list_node.next) |n| n else child.sibling_list_node.prev;
_ = @cmpxchgStrong(std.DoublyLinkedList(void).Node, &p.parent_list_node.next, child, other, .seq_cst, .seq_cst);
p.completeOne();
} else {
@atomicStore(bool, &global_progress.done, true, .seq_cst);
global_progress.redraw_event.set();
if (global_progress.update_thread) |thread| thread.join();
}
}
/// Thread-safe. 0 means unknown.
pub fn setEstimatedTotalItems(self: *Node, count: usize) void {
@atomicStore(usize, &self.unprotected_estimated_total_items, count, .monotonic);
}
/// Thread-safe.
pub fn setCompletedItems(self: *Node, completed_items: usize) void {
@atomicStore(usize, &self.unprotected_completed_items, completed_items, .monotonic);
}
fn parent(child: *Node) ?*Node {
const parent_node = child.parent_list_node.prev orelse return null;
return @fieldParentPtr("parent_list_node", parent_node);
}
};
var global_progress: Progress = .{
.terminal = null,
.is_windows_terminal = false,
.supports_ansi_escape_codes = false,
.root = undefined,
.update_thread = null,
.redraw_event = .{},
.initialized = false,
.refresh_rate_ns = undefined,
.initial_delay_ns = undefined,
.rows = 0,
.cols = 0,
.draw_buffer = undefined,
.done = false,
};
/// Initializes a global Progress instance.
///
/// Asserts there is only one global Progress instance.
///
/// Call `Node.end` when done.
pub fn start(options: Options) *Node {
assert(!global_progress.initialized);
const stderr = std.io.getStdErr();
if (stderr.supportsAnsiEscapeCodes()) {
global_progress.terminal = stderr;
global_progress.supports_ansi_escape_codes = true;
} else if (builtin.os.tag == .windows and stderr.isTty()) {
global_progress.is_windows_terminal = true;
global_progress.terminal = stderr;
} else if (builtin.os.tag != .windows) {
// we are in a "dumb" terminal like in acme or writing to a file
global_progress.terminal = stderr;
}
global_progress.root = .{
.mutex = .{},
.parent_list_node = .{ .data = {} },
.sibling_list_node = .{ .data = {} },
.name = options.root_name,
.unprotected_estimated_total_items = options.estimated_total_items,
.unprotected_completed_items = 0,
};
global_progress.done = false;
global_progress.initialized = true;
assert(options.draw_buffer.len >= 100);
global_progress.draw_buffer = options.draw_buffer;
global_progress.refresh_rate_ns = options.refresh_rate_ns;
global_progress.initial_delay_ns = options.initial_delay_ns;
var act: posix.Sigaction = .{
.handler = .{ .sigaction = handleSigWinch },
.mask = posix.empty_sigset,
.flags = (posix.SA.SIGINFO | posix.SA.RESTART),
};
posix.sigaction(posix.SIG.WINCH, &act, null) catch {
global_progress.terminal = null;
return &global_progress.root;
};
if (global_progress.terminal != null) {
if (std.Thread.spawn(.{}, updateThreadRun, .{})) |thread| {
global_progress.update_thread = thread;
} else |_| {
global_progress.terminal = null;
}
}
return &global_progress.root;
}
/// Returns whether a resize is needed to learn the terminal size.
fn wait(timeout_ns: u64) bool {
const resize_flag = if (global_progress.redraw_event.timedWait(timeout_ns)) |_|
true
else |err| switch (err) {
error.Timeout => false,
};
global_progress.redraw_event.reset();
return resize_flag or (global_progress.cols == 0);
}
fn updateThreadRun() void {
{
const resize_flag = wait(global_progress.initial_delay_ns);
maybeUpdateSize(resize_flag);
const buffer = b: {
if (@atomicLoad(bool, &global_progress.done, .seq_cst))
return clearTerminal();
break :b computeRedraw();
};
write(buffer);
}
while (true) {
const resize_flag = wait(global_progress.refresh_rate_ns);
maybeUpdateSize(resize_flag);
const buffer = b: {
if (@atomicLoad(bool, &global_progress.done, .seq_cst))
return clearTerminal();
break :b computeRedraw();
};
write(buffer);
}
}
const start_sync = "\x1b[?2026h";
const clear = "\x1b[J";
const save = "\x1b7";
const restore = "\x1b8";
const finish_sync = "\x1b[?2026l";
fn clearTerminal() void {
write(clear);
}
fn computeRedraw() []u8 {
// The strategy is: keep the cursor at the beginning, and then with every redraw:
// erase, save, write, restore
var i: usize = 0;
const buf = global_progress.draw_buffer;
const prefix = start_sync ++ clear ++ save;
const suffix = restore ++ finish_sync;
buf[0..prefix.len].* = prefix.*;
i = prefix.len;
// Walk the tree and write the progress output to the buffer.
var node: *Node = &global_progress.root;
while (true) {
const eti = @atomicLoad(usize, &node.unprotected_estimated_total_items, .monotonic);
const completed_items = @atomicLoad(usize, &node.unprotected_completed_items, .monotonic);
if (node.name.len != 0 or eti > 0) {
if (node.name.len != 0) {
i += (std.fmt.bufPrint(buf[i..], "{s}", .{node.name}) catch @panic("TODO")).len;
}
if (eti > 0) {
i += (std.fmt.bufPrint(buf[i..], "[{d}/{d}] ", .{ completed_items, eti }) catch @panic("TODO")).len;
} else if (completed_items != 0) {
i += (std.fmt.bufPrint(buf[i..], "[{d}] ", .{completed_items}) catch @panic("TODO")).len;
}
}
node = @atomicLoad(?*Node, &node.recently_updated_child, .acquire) orelse break;
}
i = @min(global_progress.cols + prefix.len, i);
buf[i..][0..suffix.len].* = suffix.*;
i += suffix.len;
return buf[0..i];
}
fn write(buf: []const u8) void {
const tty = global_progress.terminal orelse return;
tty.writeAll(buf) catch {
global_progress.terminal = null;
};
}
fn maybeUpdateSize(resize_flag: bool) void {
if (!resize_flag) return;
var winsize: posix.winsize = .{
.ws_row = 0,
.ws_col = 0,
.ws_xpixel = 0,
.ws_ypixel = 0,
};
const fd = (global_progress.terminal orelse return).handle;
const err = posix.system.ioctl(fd, posix.T.IOCGWINSZ, @intFromPtr(&winsize));
if (posix.errno(err) == .SUCCESS) {
global_progress.rows = winsize.ws_row;
global_progress.cols = winsize.ws_col;
} else {
@panic("TODO: handle this failure");
}
}
fn handleSigWinch(sig: i32, info: *const posix.siginfo_t, ctx_ptr: ?*anyopaque) callconv(.C) void {
_ = info;
_ = ctx_ptr;
assert(sig == posix.SIG.WINCH);
global_progress.redraw_event.set();
}