zig/lib/std/crypto/aes_siv.zig
Frank Denis dd46e07fb9 std.crypto: add AES-SIV and AES-GCM-SIV
The Zig standard library lacked schemes that resist nonce reuse.

AES-SIV and AES-GCM-SIV are the standard options for this.

AES-GCM-SIV can be very useful when Zig is used to target embedded
systems, and AES-SIV is especially useful for key wrapping.

Also take it as an opportunity to add a bunch of test vectors to
modes.ctr and make sure it works with block ciphers whose size is
not 16.
2025-09-16 12:45:08 +02:00

482 lines
18 KiB
Zig

const std = @import("std");
const assert = std.debug.assert;
const crypto = std.crypto;
const debug = std.debug;
const mem = std.mem;
const math = std.math;
const modes = crypto.core.modes;
const Cmac = @import("cmac.zig").Cmac;
const AuthenticationError = crypto.errors.AuthenticationError;
pub const Aes128Siv = AesSiv(crypto.core.aes.Aes128);
pub const Aes256Siv = AesSiv(crypto.core.aes.Aes256);
/// AES-SIV: Deterministic authenticated encryption - the same message always produces the same ciphertext.
///
/// What it does: Encrypts data and protects it from tampering. Unlike most encryption modes,
/// AES-SIV is deterministic: encrypting the same message with the same key always produces
/// the same ciphertext (unless you provide an optional nonce).
///
/// When to use AES-SIV:
/// - When you need deterministic encryption (e.g., for deduplication in encrypted storage)
/// - When you can't store or generate nonces
/// - For key wrapping (protecting cryptographic keys)
/// - When you need to search encrypted data without decrypting it
///
/// When NOT to use AES-SIV:
/// - When identical plaintexts must produce different ciphertexts (use AES-GCM or AES-GCM-SIV)
/// - For network protocols where replay attacks are a concern
///
/// Unique features:
/// - Optional nonce: You can add a nonce to make encryption non-deterministic, but this is optional
/// - Multiple associated data: Supports a vector of associated data strings instead of just one.
/// The algorithm cryptographically ensures each component is properly separated, preventing
/// canonicalization attacks where different splits of data could be accepted as valid.
///
/// Security properties:
/// - Deterministic: Same input always gives same output (this can leak information about patterns)
/// - Nonce misuse resistant: Doesn't catastrophically fail if you reuse a nonce
/// - Key commitment: Ciphertext can only be decrypted with the exact key that encrypted it
///
/// AES-SIV has better security properties than AES-GCM-SIV, but is must slower.
///
/// How it works: Combines two keys - one for authentication (S2V) and one for encryption (CTR mode).
/// The total key size is double the AES key size (256 bits for AES-128-SIV, 512 bits for AES-256-SIV).
///
/// Defined in RFC 5297.
fn AesSiv(comptime Aes: anytype) type {
debug.assert(Aes.block.block_length == 16);
return struct {
pub const tag_length = 16;
pub const key_length = Aes.key_bits / 8 * 2; // SIV uses 2x key size
const CmacImpl = Cmac(Aes);
/// S2V (String to Vector) - RFC 5297 Section 2.4
/// Derives a synthetic IV from the key and input strings using CMAC.
/// This function implements a cryptographic pseudo-random function that maps
/// a variable-length vector of strings to a fixed 128-bit output.
fn s2v(iv: *[16]u8, key: [Aes.key_bits / 8]u8, strings: []const []const u8) void {
assert(strings.len > 0);
assert(strings.len <= 127); // S2V limitation
var d: [16]u8 = undefined;
// Special case: single empty string
if (strings.len == 1 and strings[0].len == 0) {
CmacImpl.create(&d, &[_]u8{}, &key);
iv.* = d;
return;
}
// Initialize with CMAC of zero block
const zero_block: [16]u8 = @splat(0);
CmacImpl.create(&d, &zero_block, &key);
// Process all strings except the last one
var i: usize = 0;
while (i < strings.len - 1) : (i += 1) {
d = dbl(d);
var tmp: [16]u8 = undefined;
CmacImpl.create(&tmp, strings[i], &key);
for (&d, tmp) |*b, t| {
b.* ^= t;
}
}
// Process the final string
const sn = strings[strings.len - 1];
if (sn.len >= 16) {
// XOR d with the first 16 bytes of Sn
var xored_msg_buf: [4096]u8 = undefined;
const xored_len = @min(sn.len, xored_msg_buf.len);
@memcpy(xored_msg_buf[0..xored_len], sn[0..xored_len]);
for (d, 0..) |b, j| {
xored_msg_buf[j] ^= b;
}
CmacImpl.create(iv, xored_msg_buf[0..xored_len], &key);
} else {
// Pad and XOR
d = dbl(d);
var padded: [16]u8 = @splat(0);
@memcpy(padded[0..sn.len], sn);
padded[sn.len] = 0x80;
for (&d, padded) |*b, p| {
b.* ^= p;
}
CmacImpl.create(iv, &d, &key);
}
}
/// Double operation as defined in RFC 5297.
/// Performs multiplication by x (i.e., left shift by 1) in GF(2^128).
/// This is the same operation used in CMAC subkey generation.
/// If the MSB is set, XORs with the polynomial 0x87 after shifting.
fn dbl(d: [16]u8) [16]u8 {
// Read as big-endian 128-bit integer
const val = mem.readInt(u128, &d, .big);
// Left shift by 1, and XOR with 0x87 if MSB was set
const doubled = (val << 1) ^ (0x87 & -%(@as(u128, val >> 127)));
// Write back as big-endian
var result: [16]u8 = undefined;
mem.writeInt(u128, &result, doubled, .big);
return result;
}
/// Encrypt plaintext using AES-SIV
/// `c`: Output buffer for ciphertext (same size as plaintext)
/// `tag`: Output buffer for authentication tag (synthetic IV)
/// `m`: Plaintext to encrypt
/// `ad`: Optional associated data
/// `nonce`: Optional nonce (if provided, will be added as last AD component)
/// `key`: Combined key (2x AES key size)
pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: ?[]const u8, nonce: ?[]const u8, key: [key_length]u8) void {
debug.assert(c.len == m.len);
// Split key into K1 (for S2V) and K2 (for CTR)
const k1 = key[0 .. Aes.key_bits / 8];
const k2 = key[Aes.key_bits / 8 ..];
// Prepare strings for S2V: AD components followed by plaintext
var strings_buf: [128][]const u8 = undefined;
var strings_len: usize = 0;
if (ad) |a| {
strings_buf[strings_len] = a;
strings_len += 1;
}
if (nonce) |n| {
strings_buf[strings_len] = n;
strings_len += 1;
}
strings_buf[strings_len] = m;
strings_len += 1;
// Compute synthetic IV using S2V
s2v(tag, k1.*, strings_buf[0..strings_len]);
// Clear the 31st and 63rd bits for use as CTR IV
var ctr_iv = tag.*;
ctr_iv[8] &= 0x7f;
ctr_iv[12] &= 0x7f;
// Encrypt plaintext using CTR mode
const aes_ctx = Aes.initEnc(k2.*);
modes.ctr(@TypeOf(aes_ctx), aes_ctx, c, m, ctr_iv, .big);
}
/// Decrypt ciphertext using AES-SIV
/// `m`: Output buffer for decrypted plaintext
/// `c`: Ciphertext to decrypt
/// `tag`: Authentication tag (synthetic IV)
/// `ad`: Optional associated data (must match encryption)
/// `nonce`: Optional nonce (must match encryption)
/// `key`: Combined key (2x AES key size)
pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: ?[]const u8, nonce: ?[]const u8, key: [key_length]u8) AuthenticationError!void {
assert(c.len == m.len);
// Split key into K1 (for S2V) and K2 (for CTR)
const k1 = key[0 .. Aes.key_bits / 8];
const k2 = key[Aes.key_bits / 8 ..];
// Clear the 31st and 63rd bits for use as CTR IV
var ctr_iv = tag;
ctr_iv[8] &= 0x7f;
ctr_iv[12] &= 0x7f;
// Decrypt ciphertext using CTR mode
const aes_ctx = Aes.initEnc(k2.*);
modes.ctr(@TypeOf(aes_ctx), aes_ctx, m, c, ctr_iv, .big);
// Prepare strings for S2V: AD components followed by plaintext
var strings_buf: [128][]const u8 = undefined;
var strings_len: usize = 0;
if (ad) |a| {
strings_buf[strings_len] = a;
strings_len += 1;
}
if (nonce) |n| {
strings_buf[strings_len] = n;
strings_len += 1;
}
strings_buf[strings_len] = m;
strings_len += 1;
// Verify synthetic IV using S2V
var computed_tag: [tag_length]u8 = undefined;
s2v(&computed_tag, k1.*, strings_buf[0..strings_len]);
// Verify tag
const verify = crypto.timing_safe.eql([tag_length]u8, computed_tag, tag);
if (!verify) {
crypto.secureZero(u8, &computed_tag);
@memset(m, undefined);
return error.AuthenticationFailed;
}
}
/// Encrypts plaintext with multiple associated data components.
/// This is the most general form of AES-SIV encryption that accepts
/// an arbitrary vector of associated data strings as specified in RFC 5297.
pub fn encryptWithAdVector(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const []const u8, key: [key_length]u8) void {
debug.assert(c.len == m.len);
// Split key into K1 (for S2V) and K2 (for CTR)
const k1 = key[0 .. Aes.key_bits / 8];
const k2 = key[Aes.key_bits / 8 ..];
// Prepare strings for S2V: AD components followed by plaintext
var strings_buf: [128][]const u8 = undefined;
var strings_len: usize = 0;
for (ad) |a| {
strings_buf[strings_len] = a;
strings_len += 1;
}
strings_buf[strings_len] = m;
strings_len += 1;
// Compute synthetic IV using S2V
s2v(tag, k1.*, strings_buf[0..strings_len]);
// Clear the 31st and 63rd bits for use as CTR IV
var ctr_iv = tag.*;
ctr_iv[8] &= 0x7f;
ctr_iv[12] &= 0x7f;
// Encrypt plaintext using CTR mode
const aes_ctx = Aes.initEnc(k2.*);
modes.ctr(@TypeOf(aes_ctx), aes_ctx, c, m, ctr_iv, .big);
}
/// Decrypts ciphertext with multiple associated data components.
/// This is the most general form of AES-SIV decryption that accepts
/// an arbitrary vector of associated data strings as specified in RFC 5297.
pub fn decryptWithAdVector(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const []const u8, key: [key_length]u8) AuthenticationError!void {
assert(c.len == m.len);
// Split key into K1 (for S2V) and K2 (for CTR)
const k1 = key[0 .. Aes.key_bits / 8];
const k2 = key[Aes.key_bits / 8 ..];
// Clear the 31st and 63rd bits for use as CTR IV
var ctr_iv = tag;
ctr_iv[8] &= 0x7f;
ctr_iv[12] &= 0x7f;
// Decrypt ciphertext using CTR mode
const aes_ctx = Aes.initEnc(k2.*);
modes.ctr(@TypeOf(aes_ctx), aes_ctx, m, c, ctr_iv, .big);
// Prepare strings for S2V: AD components followed by plaintext
var strings_buf: [128][]const u8 = undefined;
var strings_len: usize = 0;
for (ad) |a| {
strings_buf[strings_len] = a;
strings_len += 1;
}
strings_buf[strings_len] = m;
strings_len += 1;
// Verify synthetic IV using S2V
var computed_tag: [tag_length]u8 = undefined;
s2v(&computed_tag, k1.*, strings_buf[0..strings_len]);
// Verify tag
const verify = crypto.timing_safe.eql([tag_length]u8, computed_tag, tag);
if (!verify) {
crypto.secureZero(u8, &computed_tag);
@memset(m, undefined);
return error.AuthenticationFailed;
}
}
};
}
const htest = @import("test.zig");
const testing = std.testing;
test "AES-SIV double operation" {
const AesSivTest = AesSiv(crypto.core.aes.Aes128);
// Test vector from RFC 5297
const input = [_]u8{ 0x0e, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e };
const expected = [_]u8{ 0x1c, 0x08, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c };
const result = AesSivTest.dbl(input);
try testing.expectEqualSlices(u8, &expected, &result);
}
test "AES-SIV double operation with MSB set" {
const AesSivTest = AesSiv(crypto.core.aes.Aes128);
const input = [_]u8{ 0xe0, 0x40, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0 };
const expected = [_]u8{ 0xc0, 0x80, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe1, 0x01, 0x21, 0x41, 0x61, 0x81, 0xa1, 0x47 };
const result = AesSivTest.dbl(input);
try testing.expectEqualSlices(u8, &expected, &result);
}
test "Aes128Siv - RFC 5297 Test Vector A.1" {
// Test vector from RFC 5297 Appendix A.1
const key = [_]u8{
0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8, 0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};
const ad = [_]u8{
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
};
const plaintext = [_]u8{
0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
};
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
// Test using vector API for RFC compliance
const ad_components = [_][]const u8{&ad};
Aes128Siv.encryptWithAdVector(&ciphertext, &tag, &plaintext, &ad_components, key);
// Expected values from RFC 5297
try htest.assertEqual("85632d07c6e8f37f950acd320a2ecc93", &tag);
try htest.assertEqual("40c02b9690c4dc04daef7f6afe5c", &ciphertext);
// Test decryption
var decrypted: [plaintext.len]u8 = undefined;
try Aes128Siv.decryptWithAdVector(&decrypted, &ciphertext, tag, &ad_components, key);
try testing.expectEqualSlices(u8, &plaintext, &decrypted);
}
test "Aes128Siv - empty plaintext" {
const key: [32]u8 = @splat(0x42);
const plaintext = "";
const ad = "additional data";
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);
var decrypted: [plaintext.len]u8 = undefined;
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key);
}
test "Aes128Siv - with nonce" {
const key: [32]u8 = @splat(0x69);
const nonce: [16]u8 = @splat(0x42);
const plaintext = "Hello, AES-SIV!";
const ad = "metadata";
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, &nonce, key);
var decrypted: [plaintext.len]u8 = undefined;
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, &nonce, key);
try testing.expectEqualSlices(u8, plaintext, &decrypted);
}
test "Aes256Siv - basic functionality" {
const key: [64]u8 = @splat(0x96);
const plaintext = "Test message for AES-256-SIV";
const ad1 = "header";
const ad2 = "more data";
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
// Test with multiple AD components using the vector API
const ad_components = [_][]const u8{ ad1, ad2 };
Aes256Siv.encryptWithAdVector(&ciphertext, &tag, plaintext, &ad_components, key);
var decrypted: [plaintext.len]u8 = undefined;
try Aes256Siv.decryptWithAdVector(&decrypted, &ciphertext, tag, &ad_components, key);
try testing.expectEqualSlices(u8, plaintext, &decrypted);
}
test "Aes128Siv - demonstrating optional parameters" {
const key: [32]u8 = @splat(0x77);
// Test 1: No AD, no nonce (pure deterministic)
{
const plaintext = "Deterministic encryption";
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, null, null, key);
var decrypted: [plaintext.len]u8 = undefined;
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, null, null, key);
try testing.expectEqualSlices(u8, plaintext, &decrypted);
}
// Test 2: With AD, no nonce
{
const plaintext = "With associated data";
const ad = "some context";
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);
var decrypted: [plaintext.len]u8 = undefined;
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key);
try testing.expectEqualSlices(u8, plaintext, &decrypted);
}
// Test 3: No AD, with nonce
{
const plaintext = "Nonce-based encryption";
const nonce: [12]u8 = @splat(0x01);
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, null, &nonce, key);
var decrypted: [plaintext.len]u8 = undefined;
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, null, &nonce, key);
try testing.expectEqualSlices(u8, plaintext, &decrypted);
}
// Test 4: With both AD and nonce
{
const plaintext = "Full featured";
const ad = "context";
const nonce: [16]u8 = @splat(0x02);
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, &nonce, key);
var decrypted: [plaintext.len]u8 = undefined;
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, &nonce, key);
try testing.expectEqualSlices(u8, plaintext, &decrypted);
}
}
test "Aes128Siv - authentication failure" {
const key: [32]u8 = @splat(0x13);
const plaintext = "Secret message";
const ad = "";
var ciphertext: [plaintext.len]u8 = undefined;
var tag: [16]u8 = undefined;
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);
// Corrupt the tag
tag[0] ^= 0x01;
var decrypted: [plaintext.len]u8 = undefined;
try testing.expectError(error.AuthenticationFailed, Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key));
}