mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
std.crypto: add AES-SIV and AES-GCM-SIV
The Zig standard library lacked schemes that resist nonce reuse. AES-SIV and AES-GCM-SIV are the standard options for this. AES-GCM-SIV can be very useful when Zig is used to target embedded systems, and AES-SIV is especially useful for key wrapping. Also take it as an opportunity to add a bunch of test vectors to modes.ctr and make sure it works with block ciphers whose size is not 16.
This commit is contained in:
parent
496313a1bd
commit
dd46e07fb9
@ -31,6 +31,16 @@ pub const aead = struct {
|
||||
pub const Aes256Gcm = @import("crypto/aes_gcm.zig").Aes256Gcm;
|
||||
};
|
||||
|
||||
pub const aes_gcm_siv = struct {
|
||||
pub const Aes128GcmSiv = @import("crypto/aes_gcm_siv.zig").Aes128GcmSiv;
|
||||
pub const Aes256GcmSiv = @import("crypto/aes_gcm_siv.zig").Aes256GcmSiv;
|
||||
};
|
||||
|
||||
pub const aes_siv = struct {
|
||||
pub const Aes128Siv = @import("crypto/aes_siv.zig").Aes128Siv;
|
||||
pub const Aes256Siv = @import("crypto/aes_siv.zig").Aes256Siv;
|
||||
};
|
||||
|
||||
pub const aes_ocb = struct {
|
||||
pub const Aes128Ocb = @import("crypto/aes_ocb.zig").Aes128Ocb;
|
||||
pub const Aes256Ocb = @import("crypto/aes_ocb.zig").Aes256Ocb;
|
||||
@ -249,6 +259,12 @@ test {
|
||||
_ = aead.aes_gcm.Aes128Gcm;
|
||||
_ = aead.aes_gcm.Aes256Gcm;
|
||||
|
||||
_ = aead.aes_gcm_siv.Aes128GcmSiv;
|
||||
_ = aead.aes_gcm_siv.Aes256GcmSiv;
|
||||
|
||||
_ = aead.aes_siv.Aes128Siv;
|
||||
_ = aead.aes_siv.Aes256Siv;
|
||||
|
||||
_ = aead.aes_ocb.Aes128Ocb;
|
||||
_ = aead.aes_ocb.Aes256Ocb;
|
||||
|
||||
|
||||
@ -28,31 +28,6 @@ pub const AesDecryptCtx = impl.AesDecryptCtx;
|
||||
pub const Aes128 = impl.Aes128;
|
||||
pub const Aes256 = impl.Aes256;
|
||||
|
||||
test "ctr" {
|
||||
// NIST SP 800-38A pp 55-58
|
||||
const ctr = @import("modes.zig").ctr;
|
||||
|
||||
const key = [_]u8{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
|
||||
const iv = [_]u8{ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };
|
||||
const in = [_]u8{
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
|
||||
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
|
||||
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
|
||||
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
|
||||
};
|
||||
const exp_out = [_]u8{
|
||||
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
|
||||
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
|
||||
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
|
||||
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee,
|
||||
};
|
||||
|
||||
var out: [exp_out.len]u8 = undefined;
|
||||
const ctx = Aes128.initEnc(key);
|
||||
ctr(AesEncryptCtx(Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, exp_out[0..], out[0..]);
|
||||
}
|
||||
|
||||
test "encrypt" {
|
||||
// Appendix B
|
||||
{
|
||||
|
||||
481
lib/std/crypto/aes_siv.zig
Normal file
481
lib/std/crypto/aes_siv.zig
Normal file
@ -0,0 +1,481 @@
|
||||
const std = @import("std");
|
||||
const assert = std.debug.assert;
|
||||
const crypto = std.crypto;
|
||||
const debug = std.debug;
|
||||
const mem = std.mem;
|
||||
const math = std.math;
|
||||
const modes = crypto.core.modes;
|
||||
const Cmac = @import("cmac.zig").Cmac;
|
||||
const AuthenticationError = crypto.errors.AuthenticationError;
|
||||
|
||||
pub const Aes128Siv = AesSiv(crypto.core.aes.Aes128);
|
||||
pub const Aes256Siv = AesSiv(crypto.core.aes.Aes256);
|
||||
|
||||
/// AES-SIV: Deterministic authenticated encryption - the same message always produces the same ciphertext.
|
||||
///
|
||||
/// What it does: Encrypts data and protects it from tampering. Unlike most encryption modes,
|
||||
/// AES-SIV is deterministic: encrypting the same message with the same key always produces
|
||||
/// the same ciphertext (unless you provide an optional nonce).
|
||||
///
|
||||
/// When to use AES-SIV:
|
||||
/// - When you need deterministic encryption (e.g., for deduplication in encrypted storage)
|
||||
/// - When you can't store or generate nonces
|
||||
/// - For key wrapping (protecting cryptographic keys)
|
||||
/// - When you need to search encrypted data without decrypting it
|
||||
///
|
||||
/// When NOT to use AES-SIV:
|
||||
/// - When identical plaintexts must produce different ciphertexts (use AES-GCM or AES-GCM-SIV)
|
||||
/// - For network protocols where replay attacks are a concern
|
||||
///
|
||||
/// Unique features:
|
||||
/// - Optional nonce: You can add a nonce to make encryption non-deterministic, but this is optional
|
||||
/// - Multiple associated data: Supports a vector of associated data strings instead of just one.
|
||||
/// The algorithm cryptographically ensures each component is properly separated, preventing
|
||||
/// canonicalization attacks where different splits of data could be accepted as valid.
|
||||
///
|
||||
/// Security properties:
|
||||
/// - Deterministic: Same input always gives same output (this can leak information about patterns)
|
||||
/// - Nonce misuse resistant: Doesn't catastrophically fail if you reuse a nonce
|
||||
/// - Key commitment: Ciphertext can only be decrypted with the exact key that encrypted it
|
||||
///
|
||||
/// AES-SIV has better security properties than AES-GCM-SIV, but is must slower.
|
||||
///
|
||||
/// How it works: Combines two keys - one for authentication (S2V) and one for encryption (CTR mode).
|
||||
/// The total key size is double the AES key size (256 bits for AES-128-SIV, 512 bits for AES-256-SIV).
|
||||
///
|
||||
/// Defined in RFC 5297.
|
||||
fn AesSiv(comptime Aes: anytype) type {
|
||||
debug.assert(Aes.block.block_length == 16);
|
||||
|
||||
return struct {
|
||||
pub const tag_length = 16;
|
||||
pub const key_length = Aes.key_bits / 8 * 2; // SIV uses 2x key size
|
||||
|
||||
const CmacImpl = Cmac(Aes);
|
||||
|
||||
/// S2V (String to Vector) - RFC 5297 Section 2.4
|
||||
/// Derives a synthetic IV from the key and input strings using CMAC.
|
||||
/// This function implements a cryptographic pseudo-random function that maps
|
||||
/// a variable-length vector of strings to a fixed 128-bit output.
|
||||
fn s2v(iv: *[16]u8, key: [Aes.key_bits / 8]u8, strings: []const []const u8) void {
|
||||
assert(strings.len > 0);
|
||||
assert(strings.len <= 127); // S2V limitation
|
||||
|
||||
var d: [16]u8 = undefined;
|
||||
|
||||
// Special case: single empty string
|
||||
if (strings.len == 1 and strings[0].len == 0) {
|
||||
CmacImpl.create(&d, &[_]u8{}, &key);
|
||||
iv.* = d;
|
||||
return;
|
||||
}
|
||||
|
||||
// Initialize with CMAC of zero block
|
||||
const zero_block: [16]u8 = @splat(0);
|
||||
CmacImpl.create(&d, &zero_block, &key);
|
||||
|
||||
// Process all strings except the last one
|
||||
var i: usize = 0;
|
||||
while (i < strings.len - 1) : (i += 1) {
|
||||
d = dbl(d);
|
||||
var tmp: [16]u8 = undefined;
|
||||
CmacImpl.create(&tmp, strings[i], &key);
|
||||
for (&d, tmp) |*b, t| {
|
||||
b.* ^= t;
|
||||
}
|
||||
}
|
||||
|
||||
// Process the final string
|
||||
const sn = strings[strings.len - 1];
|
||||
if (sn.len >= 16) {
|
||||
// XOR d with the first 16 bytes of Sn
|
||||
var xored_msg_buf: [4096]u8 = undefined;
|
||||
const xored_len = @min(sn.len, xored_msg_buf.len);
|
||||
@memcpy(xored_msg_buf[0..xored_len], sn[0..xored_len]);
|
||||
|
||||
for (d, 0..) |b, j| {
|
||||
xored_msg_buf[j] ^= b;
|
||||
}
|
||||
|
||||
CmacImpl.create(iv, xored_msg_buf[0..xored_len], &key);
|
||||
} else {
|
||||
// Pad and XOR
|
||||
d = dbl(d);
|
||||
var padded: [16]u8 = @splat(0);
|
||||
@memcpy(padded[0..sn.len], sn);
|
||||
padded[sn.len] = 0x80;
|
||||
for (&d, padded) |*b, p| {
|
||||
b.* ^= p;
|
||||
}
|
||||
CmacImpl.create(iv, &d, &key);
|
||||
}
|
||||
}
|
||||
|
||||
/// Double operation as defined in RFC 5297.
|
||||
/// Performs multiplication by x (i.e., left shift by 1) in GF(2^128).
|
||||
/// This is the same operation used in CMAC subkey generation.
|
||||
/// If the MSB is set, XORs with the polynomial 0x87 after shifting.
|
||||
fn dbl(d: [16]u8) [16]u8 {
|
||||
// Read as big-endian 128-bit integer
|
||||
const val = mem.readInt(u128, &d, .big);
|
||||
|
||||
// Left shift by 1, and XOR with 0x87 if MSB was set
|
||||
const doubled = (val << 1) ^ (0x87 & -%(@as(u128, val >> 127)));
|
||||
|
||||
// Write back as big-endian
|
||||
var result: [16]u8 = undefined;
|
||||
mem.writeInt(u128, &result, doubled, .big);
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Encrypt plaintext using AES-SIV
|
||||
/// `c`: Output buffer for ciphertext (same size as plaintext)
|
||||
/// `tag`: Output buffer for authentication tag (synthetic IV)
|
||||
/// `m`: Plaintext to encrypt
|
||||
/// `ad`: Optional associated data
|
||||
/// `nonce`: Optional nonce (if provided, will be added as last AD component)
|
||||
/// `key`: Combined key (2x AES key size)
|
||||
pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: ?[]const u8, nonce: ?[]const u8, key: [key_length]u8) void {
|
||||
debug.assert(c.len == m.len);
|
||||
|
||||
// Split key into K1 (for S2V) and K2 (for CTR)
|
||||
const k1 = key[0 .. Aes.key_bits / 8];
|
||||
const k2 = key[Aes.key_bits / 8 ..];
|
||||
|
||||
// Prepare strings for S2V: AD components followed by plaintext
|
||||
var strings_buf: [128][]const u8 = undefined;
|
||||
var strings_len: usize = 0;
|
||||
|
||||
if (ad) |a| {
|
||||
strings_buf[strings_len] = a;
|
||||
strings_len += 1;
|
||||
}
|
||||
if (nonce) |n| {
|
||||
strings_buf[strings_len] = n;
|
||||
strings_len += 1;
|
||||
}
|
||||
strings_buf[strings_len] = m;
|
||||
strings_len += 1;
|
||||
|
||||
// Compute synthetic IV using S2V
|
||||
s2v(tag, k1.*, strings_buf[0..strings_len]);
|
||||
|
||||
// Clear the 31st and 63rd bits for use as CTR IV
|
||||
var ctr_iv = tag.*;
|
||||
ctr_iv[8] &= 0x7f;
|
||||
ctr_iv[12] &= 0x7f;
|
||||
|
||||
// Encrypt plaintext using CTR mode
|
||||
const aes_ctx = Aes.initEnc(k2.*);
|
||||
modes.ctr(@TypeOf(aes_ctx), aes_ctx, c, m, ctr_iv, .big);
|
||||
}
|
||||
|
||||
/// Decrypt ciphertext using AES-SIV
|
||||
/// `m`: Output buffer for decrypted plaintext
|
||||
/// `c`: Ciphertext to decrypt
|
||||
/// `tag`: Authentication tag (synthetic IV)
|
||||
/// `ad`: Optional associated data (must match encryption)
|
||||
/// `nonce`: Optional nonce (must match encryption)
|
||||
/// `key`: Combined key (2x AES key size)
|
||||
pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: ?[]const u8, nonce: ?[]const u8, key: [key_length]u8) AuthenticationError!void {
|
||||
assert(c.len == m.len);
|
||||
|
||||
// Split key into K1 (for S2V) and K2 (for CTR)
|
||||
const k1 = key[0 .. Aes.key_bits / 8];
|
||||
const k2 = key[Aes.key_bits / 8 ..];
|
||||
|
||||
// Clear the 31st and 63rd bits for use as CTR IV
|
||||
var ctr_iv = tag;
|
||||
ctr_iv[8] &= 0x7f;
|
||||
ctr_iv[12] &= 0x7f;
|
||||
|
||||
// Decrypt ciphertext using CTR mode
|
||||
const aes_ctx = Aes.initEnc(k2.*);
|
||||
modes.ctr(@TypeOf(aes_ctx), aes_ctx, m, c, ctr_iv, .big);
|
||||
|
||||
// Prepare strings for S2V: AD components followed by plaintext
|
||||
var strings_buf: [128][]const u8 = undefined;
|
||||
var strings_len: usize = 0;
|
||||
|
||||
if (ad) |a| {
|
||||
strings_buf[strings_len] = a;
|
||||
strings_len += 1;
|
||||
}
|
||||
if (nonce) |n| {
|
||||
strings_buf[strings_len] = n;
|
||||
strings_len += 1;
|
||||
}
|
||||
strings_buf[strings_len] = m;
|
||||
strings_len += 1;
|
||||
|
||||
// Verify synthetic IV using S2V
|
||||
var computed_tag: [tag_length]u8 = undefined;
|
||||
s2v(&computed_tag, k1.*, strings_buf[0..strings_len]);
|
||||
|
||||
// Verify tag
|
||||
const verify = crypto.timing_safe.eql([tag_length]u8, computed_tag, tag);
|
||||
if (!verify) {
|
||||
crypto.secureZero(u8, &computed_tag);
|
||||
@memset(m, undefined);
|
||||
return error.AuthenticationFailed;
|
||||
}
|
||||
}
|
||||
|
||||
/// Encrypts plaintext with multiple associated data components.
|
||||
/// This is the most general form of AES-SIV encryption that accepts
|
||||
/// an arbitrary vector of associated data strings as specified in RFC 5297.
|
||||
pub fn encryptWithAdVector(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const []const u8, key: [key_length]u8) void {
|
||||
debug.assert(c.len == m.len);
|
||||
|
||||
// Split key into K1 (for S2V) and K2 (for CTR)
|
||||
const k1 = key[0 .. Aes.key_bits / 8];
|
||||
const k2 = key[Aes.key_bits / 8 ..];
|
||||
|
||||
// Prepare strings for S2V: AD components followed by plaintext
|
||||
var strings_buf: [128][]const u8 = undefined;
|
||||
var strings_len: usize = 0;
|
||||
|
||||
for (ad) |a| {
|
||||
strings_buf[strings_len] = a;
|
||||
strings_len += 1;
|
||||
}
|
||||
strings_buf[strings_len] = m;
|
||||
strings_len += 1;
|
||||
|
||||
// Compute synthetic IV using S2V
|
||||
s2v(tag, k1.*, strings_buf[0..strings_len]);
|
||||
|
||||
// Clear the 31st and 63rd bits for use as CTR IV
|
||||
var ctr_iv = tag.*;
|
||||
ctr_iv[8] &= 0x7f;
|
||||
ctr_iv[12] &= 0x7f;
|
||||
|
||||
// Encrypt plaintext using CTR mode
|
||||
const aes_ctx = Aes.initEnc(k2.*);
|
||||
modes.ctr(@TypeOf(aes_ctx), aes_ctx, c, m, ctr_iv, .big);
|
||||
}
|
||||
|
||||
/// Decrypts ciphertext with multiple associated data components.
|
||||
/// This is the most general form of AES-SIV decryption that accepts
|
||||
/// an arbitrary vector of associated data strings as specified in RFC 5297.
|
||||
pub fn decryptWithAdVector(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const []const u8, key: [key_length]u8) AuthenticationError!void {
|
||||
assert(c.len == m.len);
|
||||
|
||||
// Split key into K1 (for S2V) and K2 (for CTR)
|
||||
const k1 = key[0 .. Aes.key_bits / 8];
|
||||
const k2 = key[Aes.key_bits / 8 ..];
|
||||
|
||||
// Clear the 31st and 63rd bits for use as CTR IV
|
||||
var ctr_iv = tag;
|
||||
ctr_iv[8] &= 0x7f;
|
||||
ctr_iv[12] &= 0x7f;
|
||||
|
||||
// Decrypt ciphertext using CTR mode
|
||||
const aes_ctx = Aes.initEnc(k2.*);
|
||||
modes.ctr(@TypeOf(aes_ctx), aes_ctx, m, c, ctr_iv, .big);
|
||||
|
||||
// Prepare strings for S2V: AD components followed by plaintext
|
||||
var strings_buf: [128][]const u8 = undefined;
|
||||
var strings_len: usize = 0;
|
||||
|
||||
for (ad) |a| {
|
||||
strings_buf[strings_len] = a;
|
||||
strings_len += 1;
|
||||
}
|
||||
strings_buf[strings_len] = m;
|
||||
strings_len += 1;
|
||||
|
||||
// Verify synthetic IV using S2V
|
||||
var computed_tag: [tag_length]u8 = undefined;
|
||||
s2v(&computed_tag, k1.*, strings_buf[0..strings_len]);
|
||||
|
||||
// Verify tag
|
||||
const verify = crypto.timing_safe.eql([tag_length]u8, computed_tag, tag);
|
||||
if (!verify) {
|
||||
crypto.secureZero(u8, &computed_tag);
|
||||
@memset(m, undefined);
|
||||
return error.AuthenticationFailed;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
const htest = @import("test.zig");
|
||||
const testing = std.testing;
|
||||
|
||||
test "AES-SIV double operation" {
|
||||
const AesSivTest = AesSiv(crypto.core.aes.Aes128);
|
||||
|
||||
// Test vector from RFC 5297
|
||||
const input = [_]u8{ 0x0e, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e };
|
||||
const expected = [_]u8{ 0x1c, 0x08, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c };
|
||||
|
||||
const result = AesSivTest.dbl(input);
|
||||
try testing.expectEqualSlices(u8, &expected, &result);
|
||||
}
|
||||
|
||||
test "AES-SIV double operation with MSB set" {
|
||||
const AesSivTest = AesSiv(crypto.core.aes.Aes128);
|
||||
|
||||
const input = [_]u8{ 0xe0, 0x40, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0 };
|
||||
const expected = [_]u8{ 0xc0, 0x80, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe1, 0x01, 0x21, 0x41, 0x61, 0x81, 0xa1, 0x47 };
|
||||
|
||||
const result = AesSivTest.dbl(input);
|
||||
try testing.expectEqualSlices(u8, &expected, &result);
|
||||
}
|
||||
|
||||
test "Aes128Siv - RFC 5297 Test Vector A.1" {
|
||||
// Test vector from RFC 5297 Appendix A.1
|
||||
const key = [_]u8{
|
||||
0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8, 0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
|
||||
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
|
||||
};
|
||||
const ad = [_]u8{
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
||||
};
|
||||
const plaintext = [_]u8{
|
||||
0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
|
||||
};
|
||||
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
// Test using vector API for RFC compliance
|
||||
const ad_components = [_][]const u8{&ad};
|
||||
Aes128Siv.encryptWithAdVector(&ciphertext, &tag, &plaintext, &ad_components, key);
|
||||
|
||||
// Expected values from RFC 5297
|
||||
try htest.assertEqual("85632d07c6e8f37f950acd320a2ecc93", &tag);
|
||||
try htest.assertEqual("40c02b9690c4dc04daef7f6afe5c", &ciphertext);
|
||||
|
||||
// Test decryption
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes128Siv.decryptWithAdVector(&decrypted, &ciphertext, tag, &ad_components, key);
|
||||
try testing.expectEqualSlices(u8, &plaintext, &decrypted);
|
||||
}
|
||||
|
||||
test "Aes128Siv - empty plaintext" {
|
||||
const key: [32]u8 = @splat(0x42);
|
||||
const plaintext = "";
|
||||
const ad = "additional data";
|
||||
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key);
|
||||
}
|
||||
|
||||
test "Aes128Siv - with nonce" {
|
||||
const key: [32]u8 = @splat(0x69);
|
||||
const nonce: [16]u8 = @splat(0x42);
|
||||
const plaintext = "Hello, AES-SIV!";
|
||||
const ad = "metadata";
|
||||
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, &nonce, key);
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, &nonce, key);
|
||||
try testing.expectEqualSlices(u8, plaintext, &decrypted);
|
||||
}
|
||||
|
||||
test "Aes256Siv - basic functionality" {
|
||||
const key: [64]u8 = @splat(0x96);
|
||||
const plaintext = "Test message for AES-256-SIV";
|
||||
const ad1 = "header";
|
||||
const ad2 = "more data";
|
||||
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
// Test with multiple AD components using the vector API
|
||||
const ad_components = [_][]const u8{ ad1, ad2 };
|
||||
Aes256Siv.encryptWithAdVector(&ciphertext, &tag, plaintext, &ad_components, key);
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes256Siv.decryptWithAdVector(&decrypted, &ciphertext, tag, &ad_components, key);
|
||||
try testing.expectEqualSlices(u8, plaintext, &decrypted);
|
||||
}
|
||||
|
||||
test "Aes128Siv - demonstrating optional parameters" {
|
||||
const key: [32]u8 = @splat(0x77);
|
||||
|
||||
// Test 1: No AD, no nonce (pure deterministic)
|
||||
{
|
||||
const plaintext = "Deterministic encryption";
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, null, null, key);
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, null, null, key);
|
||||
try testing.expectEqualSlices(u8, plaintext, &decrypted);
|
||||
}
|
||||
|
||||
// Test 2: With AD, no nonce
|
||||
{
|
||||
const plaintext = "With associated data";
|
||||
const ad = "some context";
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key);
|
||||
try testing.expectEqualSlices(u8, plaintext, &decrypted);
|
||||
}
|
||||
|
||||
// Test 3: No AD, with nonce
|
||||
{
|
||||
const plaintext = "Nonce-based encryption";
|
||||
const nonce: [12]u8 = @splat(0x01);
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, null, &nonce, key);
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, null, &nonce, key);
|
||||
try testing.expectEqualSlices(u8, plaintext, &decrypted);
|
||||
}
|
||||
|
||||
// Test 4: With both AD and nonce
|
||||
{
|
||||
const plaintext = "Full featured";
|
||||
const ad = "context";
|
||||
const nonce: [16]u8 = @splat(0x02);
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, &nonce, key);
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, &nonce, key);
|
||||
try testing.expectEqualSlices(u8, plaintext, &decrypted);
|
||||
}
|
||||
}
|
||||
|
||||
test "Aes128Siv - authentication failure" {
|
||||
const key: [32]u8 = @splat(0x13);
|
||||
const plaintext = "Secret message";
|
||||
const ad = "";
|
||||
|
||||
var ciphertext: [plaintext.len]u8 = undefined;
|
||||
var tag: [16]u8 = undefined;
|
||||
|
||||
Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);
|
||||
|
||||
// Corrupt the tag
|
||||
tag[0] ^= 0x01;
|
||||
|
||||
var decrypted: [plaintext.len]u8 = undefined;
|
||||
try testing.expectError(error.AuthenticationFailed, Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key));
|
||||
}
|
||||
@ -11,37 +11,217 @@ const debug = std.debug;
|
||||
/// Important: the counter mode doesn't provide authenticated encryption: the ciphertext can be trivially modified without this being detected.
|
||||
/// As a result, applications should generally never use it directly, but only in a construction that includes a MAC.
|
||||
pub fn ctr(comptime BlockCipher: anytype, block_cipher: BlockCipher, dst: []u8, src: []const u8, iv: [BlockCipher.block_length]u8, endian: std.builtin.Endian) void {
|
||||
ctrSlice(BlockCipher, block_cipher, dst, src, iv, endian, 0, BlockCipher.block_length);
|
||||
}
|
||||
|
||||
/// Counter mode with configurable counter position and size.
|
||||
///
|
||||
/// This extended version allows specifying where the counter is located within the IV block
|
||||
/// and how many bytes it occupies. This is useful for modes like AES-GCM-SIV which use a
|
||||
/// 32-bit counter at the beginning of the block.
|
||||
///
|
||||
/// @param counter_offset: Byte offset where the counter starts
|
||||
/// @param counter_size: Size of the counter in bytes
|
||||
pub fn ctrSlice(
|
||||
comptime BlockCipher: anytype,
|
||||
block_cipher: BlockCipher,
|
||||
dst: []u8,
|
||||
src: []const u8,
|
||||
iv: [BlockCipher.block_length]u8,
|
||||
endian: std.builtin.Endian,
|
||||
comptime counter_offset: usize,
|
||||
comptime counter_size: usize,
|
||||
) void {
|
||||
debug.assert(dst.len >= src.len);
|
||||
const block_length = BlockCipher.block_length;
|
||||
var counter: [BlockCipher.block_length]u8 = undefined;
|
||||
var counterInt = mem.readInt(u128, &iv, endian);
|
||||
debug.assert(counter_offset + counter_size <= block_length);
|
||||
debug.assert(counter_size > 0 and counter_size <= block_length);
|
||||
|
||||
var counterBlock = iv;
|
||||
var i: usize = 0;
|
||||
|
||||
const CounterInt = std.meta.Int(.unsigned, counter_size * 8);
|
||||
|
||||
const parallel_count = BlockCipher.block.parallel.optimal_parallel_blocks;
|
||||
const wide_block_length = parallel_count * 16;
|
||||
const wide_block_length = parallel_count * block_length;
|
||||
var cnt_val = mem.readInt(CounterInt, counterBlock[counter_offset..][0..counter_size], endian);
|
||||
if (src.len >= wide_block_length) {
|
||||
var counters: [parallel_count * 16]u8 = undefined;
|
||||
var counters: [parallel_count * block_length]u8 = undefined;
|
||||
inline for (0..parallel_count) |j| {
|
||||
counters[j * block_length ..][0..block_length].* = iv;
|
||||
}
|
||||
while (i + wide_block_length <= src.len) : (i += wide_block_length) {
|
||||
comptime var j = 0;
|
||||
inline while (j < parallel_count) : (j += 1) {
|
||||
mem.writeInt(u128, counters[j * 16 .. j * 16 + 16], counterInt, endian);
|
||||
counterInt +%= 1;
|
||||
mem.writeInt(CounterInt, counters[j * block_length + counter_offset ..][0..counter_size], cnt_val +% j, endian);
|
||||
}
|
||||
cnt_val += parallel_count;
|
||||
block_cipher.xorWide(parallel_count, dst[i .. i + wide_block_length][0..wide_block_length], src[i .. i + wide_block_length][0..wide_block_length], counters);
|
||||
}
|
||||
mem.writeInt(CounterInt, counterBlock[counter_offset..][0..counter_size], cnt_val, endian);
|
||||
}
|
||||
while (i + block_length <= src.len) : (i += block_length) {
|
||||
mem.writeInt(u128, &counter, counterInt, endian);
|
||||
counterInt +%= 1;
|
||||
block_cipher.xor(dst[i .. i + block_length][0..block_length], src[i .. i + block_length][0..block_length], counter);
|
||||
block_cipher.xor(dst[i .. i + block_length][0..block_length], src[i .. i + block_length][0..block_length], counterBlock);
|
||||
cnt_val +%= 1;
|
||||
mem.writeInt(CounterInt, counterBlock[counter_offset..][0..counter_size], cnt_val, endian);
|
||||
}
|
||||
if (i < src.len) {
|
||||
mem.writeInt(u128, &counter, counterInt, endian);
|
||||
var pad = [_]u8{0} ** block_length;
|
||||
var pad: [block_length]u8 = @splat(0);
|
||||
const src_slice = src[i..];
|
||||
@memcpy(pad[0..src_slice.len], src_slice);
|
||||
block_cipher.xor(&pad, &pad, counter);
|
||||
block_cipher.xor(&pad, &pad, counterBlock);
|
||||
const pad_slice = pad[0 .. src.len - i];
|
||||
@memcpy(dst[i..][0..pad_slice.len], pad_slice);
|
||||
}
|
||||
}
|
||||
|
||||
test "ctr mode" {
|
||||
const testing = std.testing;
|
||||
const aes = std.crypto.core.aes;
|
||||
|
||||
// Test key and IV from NIST SP 800-38A
|
||||
const key = [_]u8{ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
|
||||
const iv = [_]u8{ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };
|
||||
const ctx = aes.Aes128.initEnc(key);
|
||||
|
||||
// Test 1: Empty input
|
||||
{
|
||||
const in = [_]u8{};
|
||||
const expected = [_]u8{};
|
||||
var out: [0]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 2: Single byte
|
||||
{
|
||||
const in = [_]u8{0x6b};
|
||||
const expected = [_]u8{0x87};
|
||||
var out: [1]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 3: Less than one block (15 bytes)
|
||||
{
|
||||
const in = [_]u8{ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17 };
|
||||
const expected = [_]u8{ 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6 };
|
||||
var out: [15]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 4: Exactly one block (16 bytes)
|
||||
{
|
||||
const in = [_]u8{ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };
|
||||
const expected = [_]u8{ 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce };
|
||||
var out: [16]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 5: One block plus one byte (17 bytes)
|
||||
{
|
||||
const in = [_]u8{ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, 0xae };
|
||||
const expected = [_]u8{ 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, 0x98 };
|
||||
var out: [17]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 6: Exactly two blocks (32 bytes)
|
||||
{
|
||||
const in = [_]u8{
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
|
||||
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
|
||||
};
|
||||
const expected = [_]u8{
|
||||
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
|
||||
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
|
||||
};
|
||||
var out: [32]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 7: Two blocks plus 5 bytes (37 bytes)
|
||||
{
|
||||
const in = [_]u8{
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
|
||||
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
|
||||
0x30, 0xc8, 0x1c, 0x46, 0xa3,
|
||||
};
|
||||
const expected = [_]u8{
|
||||
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
|
||||
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
|
||||
0x5a, 0xe4, 0xdf, 0x3e, 0xdb,
|
||||
};
|
||||
var out: [37]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 8: Four blocks (64 bytes) - NIST test vector
|
||||
{
|
||||
const in = [_]u8{
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
|
||||
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
|
||||
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
|
||||
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
|
||||
};
|
||||
const expected = [_]u8{
|
||||
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
|
||||
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
|
||||
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
|
||||
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee,
|
||||
};
|
||||
var out: [64]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 9: Large input (> 2*block_length, 100 bytes)
|
||||
{
|
||||
// Create a 100-byte input by extending with zeros
|
||||
var in: [100]u8 = [_]u8{0} ** 100;
|
||||
@memcpy(in[0..64], &[_]u8{
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
|
||||
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
|
||||
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
|
||||
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
|
||||
});
|
||||
|
||||
// Expected output: first 64 bytes from NIST, then CTR continues with zeros
|
||||
var expected: [100]u8 = undefined;
|
||||
@memcpy(expected[0..64], &[_]u8{
|
||||
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
|
||||
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
|
||||
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
|
||||
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee,
|
||||
});
|
||||
// Compute the rest with zeros XORed with keystream
|
||||
@memcpy(expected[64..], &[_]u8{
|
||||
0xb0, 0x0d, 0x47, 0xf8, 0x14, 0x8a, 0x91, 0x0e, 0xf0, 0x68, 0x30, 0x97, 0x90, 0x4b, 0xa5, 0x02,
|
||||
0x58, 0x99, 0x44, 0x5a, 0x4d, 0xe1, 0x01, 0xf5, 0x13, 0xca, 0xd1, 0x98, 0x7d, 0x89, 0xe9, 0x1b,
|
||||
0x3b, 0xd9, 0xac, 0x79,
|
||||
});
|
||||
|
||||
var out: [100]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], iv, std.builtin.Endian.big);
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
|
||||
// Test 10: Test with different endianness (little-endian counter)
|
||||
{
|
||||
const le_iv = [_]u8{ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
||||
const in = [_]u8{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
|
||||
|
||||
// We'll compute the expected value from the actual encryption
|
||||
var out: [16]u8 = undefined;
|
||||
ctr(aes.AesEncryptCtx(aes.Aes128), ctx, out[0..], in[0..], le_iv, std.builtin.Endian.little);
|
||||
|
||||
// The actual output for this test with little-endian counter=1
|
||||
const expected = [_]u8{ 0x7e, 0x48, 0x15, 0xa8, 0x16, 0x66, 0xf0, 0xea, 0xad, 0x3c, 0x07, 0x97, 0x2f, 0xe8, 0x25, 0xc1 };
|
||||
try testing.expectEqualSlices(u8, expected[0..], out[0..]);
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user