Most of this migration was performed automatically with `zig fmt`. There
were a few exceptions which I had to manually fix:
* `@alignCast` and `@addrSpaceCast` cannot be automatically rewritten
* `@truncate`'s fixup is incorrect for vectors
* Test cases are not formatted, and their error locations change
This is a bit harder than it seems at first glance. Actually resolving
the type is the easy part: the interesting thing is actually getting the
capture value. We split this into three cases:
* If all payload types are the same (as is required in status quo), we
can just do what we already do: get the first field value.
* If all payloads are in-memory coercible to the resolved type, we still
fetch the first field, but we also emit a `bitcast` to convert to the
resolved type.
* Otherwise, we need to handle each case separately. We emit a nested
`switch_br` which, for each possible case, gets the corresponding
union field, and coerces it to the resolved type. As an optimization,
the inner switch's 'else' prong is used for any peer which is
in-memory coercible to the target type, and the bitcast approach
described above is used.
Pointer captures have the additional constraint that all payload types
must be in-memory coercible to the resolved type.
Resolves: #2812
All tests have been manually verified which are now passing. This means that any remaining
TODO is an actual to-be-fixed or to-be-implemented test case.
The checks detecting such no-op branches (essentially instructions
that branch to the instruction immediately following the branch) were
tightened to catch more of these occurrences.
The ZIR instructions `switch_capture_else` and `switch_capture_ref` are
removed because they are not needed. Instead, the prong index is set to
max int for the special prong.
Else prong with error sets is not handled yet.
Adds a new behavior test because there was not a prior on to cover only
the capture value of else on a switch.
Previously, breaking from an outer block at comptime would result in
incorrect control flow. Now there is a mechanism, `error.ComptimeBreak`,
similar to `error.ComptimeReturn`, to send comptime control flow further
up the stack, to its matching block.
This commit also introduces a new log scope. To use it, pass
`--debug-log sema_zir` and you will see 1 line per ZIR instruction
semantically analyzed. This is useful when you want to understand what
comptime control flow is doing while debugging the compiler.
One more `switch` test case is passing.
* `Module.Union.getLayout`: fixes to support components of the union
being 0 bits.
* Implement `@typeInfo` for unions.
* Add missing calls to `resolveTypeFields`.
* Fix explicitly-provided union tag types passing a `Zir.Inst.Ref`
where an `Air.Inst.Ref` was expected. We don't have any type safety
for this; these typess are aliases.
* Fix explicitly-provided `union(enum)` tag Values allocated to the
wrong arena.
Comment from this commit reproduced here:
LLVM does not allow us to change the type of globals. So we must
create a new global with the correct type, copy all its attributes,
and then update all references to point to the new global,
delete the original, and rename the new one to the old one's name.
This is necessary because LLVM does not support const bitcasting
a struct with padding bytes, which is needed to lower a const union value
to LLVM, when a field other than the most-aligned is active. Instead,
we must lower to an unnamed struct, and pointer cast at usage sites
of the global. Such an unnamed struct is the cause of the global type
mismatch, because we don't have the LLVM type until the *value* is created,
whereas the global needs to be created based on the type alone, because
lowering the value may reference the global as a pointer.