x86_64: fix more value tracking bugs

This commit is contained in:
Jacob Young 2023-03-23 02:03:43 -04:00
parent dbe1b4a7e5
commit 12c07fcf20
5 changed files with 85 additions and 95 deletions

View File

@ -214,11 +214,6 @@ const StackAllocation = struct {
const BlockData = struct {
relocs: std.ArrayListUnmanaged(Mir.Inst.Index),
/// The first break instruction encounters `null` here and chooses a
/// machine code value for the block result, populating this field.
/// Following break instructions encounter that value and use it for
/// the location to store their block results.
mcv: MCValue,
};
const BigTomb = struct {
@ -1078,16 +1073,12 @@ fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void {
var it = self.register_manager.free_registers.iterator(.{ .kind = .unset });
while (it.next()) |index| {
const tracked_inst = self.register_manager.registers[index];
switch (air_tags[tracked_inst]) {
.block => {},
else => assert(RegisterManager.indexOfRegIntoTracked(
switch (self.getResolvedInstValue(tracked_inst).?) {
.register => |reg| reg,
.register_overflow => |ro| ro.reg,
else => unreachable,
},
).? == index),
}
const tracked_mcv = self.getResolvedInstValue(tracked_inst).?.*;
assert(RegisterManager.indexOfRegIntoTracked(switch (tracked_mcv) {
.register => |reg| reg,
.register_overflow => |ro| ro.reg,
else => unreachable,
}).? == index);
}
}
}
@ -1114,7 +1105,7 @@ fn freeValue(self: *Self, value: MCValue) void {
fn processDeath(self: *Self, inst: Air.Inst.Index) void {
const air_tags = self.air.instructions.items(.tag);
if (air_tags[inst] == .constant) return; // Constants are immortal.
const prev_value = self.getResolvedInstValue(inst) orelse return;
const prev_value = (self.getResolvedInstValue(inst) orelse return).*;
log.debug("%{d} => {}", .{ inst, MCValue.dead });
// When editing this function, note that the logic must synchronize with `reuseOperand`.
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
@ -1259,45 +1250,29 @@ fn allocRegOrMemAdvanced(self: *Self, elem_ty: Type, inst: ?Air.Inst.Index, reg_
}
const State = struct {
next_stack_offset: u32,
registers: abi.RegisterManager.TrackedRegisters,
free_registers: abi.RegisterManager.RegisterBitSet,
eflags_inst: ?Air.Inst.Index,
stack: std.AutoHashMapUnmanaged(u32, StackAllocation),
fn deinit(state: *State, gpa: Allocator) void {
state.stack.deinit(gpa);
}
};
fn captureState(self: *Self) !State {
fn captureState(self: *Self) State {
return State{
.next_stack_offset = self.next_stack_offset,
.registers = self.register_manager.registers,
.free_registers = self.register_manager.free_registers,
.eflags_inst = self.eflags_inst,
.stack = try self.stack.clone(self.gpa),
};
}
fn revertState(self: *Self, state: State) !void {
var stack = try state.stack.clone(self.gpa);
errdefer stack.deinit(self.gpa);
self.register_manager.registers = state.registers;
fn revertState(self: *Self, state: State) void {
self.eflags_inst = state.eflags_inst;
self.stack.deinit(self.gpa);
self.stack = stack;
self.next_stack_offset = state.next_stack_offset;
self.register_manager.free_registers = state.free_registers;
self.register_manager.registers = state.registers;
}
pub fn spillInstruction(self: *Self, reg: Register, inst: Air.Inst.Index) !void {
const stack_mcv = try self.allocRegOrMem(inst, false);
log.debug("spilling %{d} to stack mcv {any}", .{ inst, stack_mcv });
const reg_mcv = self.getResolvedInstValue(inst).?;
const reg_mcv = self.getResolvedInstValue(inst).?.*;
switch (reg_mcv) {
.register => |other| {
assert(reg.to64() == other.to64());
@ -1314,7 +1289,7 @@ pub fn spillInstruction(self: *Self, reg: Register, inst: Air.Inst.Index) !void
pub fn spillEflagsIfOccupied(self: *Self) !void {
if (self.eflags_inst) |inst_to_save| {
const mcv = self.getResolvedInstValue(inst_to_save).?;
const mcv = self.getResolvedInstValue(inst_to_save).?.*;
const new_mcv = switch (mcv) {
.register_overflow => try self.allocRegOrMem(inst_to_save, false),
.eflags => try self.allocRegOrMem(inst_to_save, true),
@ -2607,7 +2582,7 @@ fn airPtrElemVal(self: *Self, inst: Air.Inst.Index) !void {
const index_ty = self.air.typeOf(bin_op.rhs);
const index = try self.resolveInst(bin_op.rhs);
const index_lock: ?RegisterLock = switch (index) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (index_lock) |lock| self.register_manager.unlockReg(lock);
@ -2656,7 +2631,7 @@ fn airPtrElemPtr(self: *Self, inst: Air.Inst.Index) !void {
const index_ty = self.air.typeOf(extra.rhs);
const index = try self.resolveInst(extra.rhs);
const index_lock: ?RegisterLock = switch (index) {
.register => |reg| self.register_manager.lockRegAssumeUnused(reg),
.register => |reg| self.register_manager.lockReg(reg),
else => null,
};
defer if (index_lock) |lock| self.register_manager.unlockReg(lock);
@ -3202,8 +3177,8 @@ fn reuseOperand(
.register => |reg| {
// If it's in the registers table, need to associate the register with the
// new instruction.
if (RegisterManager.indexOfRegIntoTracked(reg)) |index| {
if (!self.register_manager.isRegFree(reg)) {
if (!self.register_manager.isRegFree(reg)) {
if (RegisterManager.indexOfRegIntoTracked(reg)) |index| {
self.register_manager.registers[index] = inst;
}
}
@ -3542,7 +3517,7 @@ fn airStore(self: *Self, inst: Air.Inst.Index) !void {
const value_ty = self.air.typeOf(bin_op.rhs);
log.debug("airStore(%{d}): {} <- {}", .{ inst, ptr, value });
try self.store(ptr, value, ptr_ty, value_ty);
return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none });
return self.finishAir(inst, .none, .{ bin_op.lhs, bin_op.rhs, .none });
}
fn airStructFieldPtr(self: *Self, inst: Air.Inst.Index) !void {
@ -5270,8 +5245,7 @@ fn airCondBr(self: *Self, inst: Air.Inst.Index) !void {
}
// Capture the state of register and stack allocation state so that we can revert to it.
var saved_state = try self.captureState();
defer saved_state.deinit(self.gpa);
const saved_state = self.captureState();
{
try self.branch_stack.append(.{});
@ -5289,7 +5263,7 @@ fn airCondBr(self: *Self, inst: Air.Inst.Index) !void {
var then_branch = self.branch_stack.pop();
defer then_branch.deinit(self.gpa);
try self.revertState(saved_state);
self.revertState(saved_state);
try self.performReloc(reloc);
@ -5632,24 +5606,28 @@ fn airBlock(self: *Self, inst: Air.Inst.Index) !void {
try self.blocks.putNoClobber(self.gpa, inst, .{
// A block is a setup to be able to jump to the end.
.relocs = .{},
// It also acts as a receptacle for break operands.
// Here we use `MCValue.none` to represent a null value so that the first
// break instruction will choose a MCValue for the block result and overwrite
// this field. Following break instructions will use that MCValue to put their
// block results.
.mcv = if (self.liveness.isUnused(inst)) .dead else .none,
});
defer self.blocks.getPtr(inst).?.relocs.deinit(self.gpa);
{
// Here we use `.none` to represent a null value so that the first break
// instruction will choose a MCValue for the block result and overwrite
// this field. Following break instructions will use that MCValue to put
// their block results.
const ty = self.air.typeOfIndex(inst);
const result: MCValue =
if (!ty.hasRuntimeBitsIgnoreComptime() or self.liveness.isUnused(inst)) .dead else .none;
const branch = &self.branch_stack.items[self.branch_stack.items.len - 1];
branch.inst_table.putAssumeCapacityNoClobber(inst, result);
}
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.Block, ty_pl.payload);
const body = self.air.extra[extra.end..][0..extra.data.body_len];
try self.genBody(body);
for (self.blocks.getPtr(inst).?.relocs.items) |reloc| try self.performReloc(reloc);
const result = self.blocks.getPtr(inst).?.mcv;
return self.finishAir(inst, result, .{ .none, .none, .none });
self.finishAirBookkeeping();
}
fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
@ -5687,8 +5665,7 @@ fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
defer if (prev_branch) |*branch| branch.deinit(self.gpa);
// Capture the state of register and stack allocation state so that we can revert to it.
var saved_state = try self.captureState();
defer saved_state.deinit(self.gpa);
const saved_state = self.captureState();
const cases_len = switch_br.data.cases_len + @boolToInt(switch_br.data.else_body_len > 0);
while (case_i < switch_br.data.cases_len) : (case_i += 1) {
@ -5698,7 +5675,7 @@ fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
extra_index = case.end + items.len + case_body.len;
// Revert to the previous register and stack allocation state.
if (prev_branch) |_| try self.revertState(saved_state);
if (prev_branch) |_| self.revertState(saved_state);
var relocs = try self.gpa.alloc(u32, items.len);
defer self.gpa.free(relocs);
@ -5742,7 +5719,7 @@ fn airSwitch(self: *Self, inst: Air.Inst.Index) !void {
const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len];
// Revert to the previous register and stack allocation state.
if (prev_branch) |_| try self.revertState(saved_state);
if (prev_branch) |_| self.revertState(saved_state);
{
if (cases_len > 1) try self.branch_stack.append(.{});
@ -5801,7 +5778,7 @@ fn canonicaliseBranches(
if (target_value == .dead) continue;
// The instruction is only overridden in the else branch.
// If integer overflows occurs, the question is: why wasn't the instruction marked dead?
break :blk self.getResolvedInstValue(target_key).?;
break :blk self.getResolvedInstValue(target_key).?.*;
};
log.debug("consolidating target_entry {d} {}=>{}", .{ target_key, target_value, canon_mcv });
// TODO make sure the destination stack offset / register does not already have something
@ -5816,17 +5793,18 @@ fn canonicaliseBranches(
// We already deleted the items from this table that matched the target_branch.
// So these are all instructions that are only overridden in the canon branch.
const parent_mcv =
if (canon_value != .dead) self.getResolvedInstValue(canon_key).? else undefined;
if (canon_value != .dead) self.getResolvedInstValue(canon_key).?.* else undefined;
if (canon_value != .dead) {
log.debug("consolidating canon_entry {d} {}=>{}", .{ canon_key, parent_mcv, canon_value });
// TODO make sure the destination stack offset / register does not already have something
// going on there.
try self.setRegOrMem(self.air.typeOfIndex(canon_key), canon_value, parent_mcv);
self.freeValue(parent_mcv);
// TODO track the new register / stack allocation
}
if (update_parent) {
parent_branch.inst_table.putAssumeCapacity(canon_key, canon_value);
}
if (canon_value == .dead) continue;
log.debug("consolidating canon_entry {d} {}=>{}", .{ canon_key, parent_mcv, canon_value });
// TODO make sure the destination stack offset / register does not already have something
// going on there.
try self.setRegOrMem(self.air.typeOfIndex(canon_key), canon_value, parent_mcv);
self.freeValue(parent_mcv);
// TODO track the new register / stack allocation
}
}
@ -5845,27 +5823,41 @@ fn performReloc(self: *Self, reloc: Mir.Inst.Index) !void {
fn airBr(self: *Self, inst: Air.Inst.Index) !void {
const branch = self.air.instructions.items(.data)[inst].br;
try self.br(branch.block_inst, branch.operand);
try self.br(inst, branch.block_inst, branch.operand);
return self.finishAir(inst, .dead, .{ branch.operand, .none, .none });
}
fn br(self: *Self, block: Air.Inst.Index, operand: Air.Inst.Ref) !void {
const block_data = self.blocks.getPtr(block).?;
if (block_data.mcv != .dead and self.air.typeOf(operand).hasRuntimeBits()) {
const operand_mcv = try self.resolveInst(operand);
if (block_data.mcv == .none) {
block_data.mcv = switch (operand_mcv) {
.none, .dead, .unreach => unreachable,
.register, .stack_offset, .memory => operand_mcv,
.eflags, .immediate, .ptr_stack_offset => blk: {
const new_mcv = try self.allocRegOrMem(block, true);
try self.setRegOrMem(self.air.typeOfIndex(block), new_mcv, operand_mcv);
break :blk new_mcv;
},
else => return self.fail("TODO implement block_data.mcv = operand_mcv for {}", .{operand_mcv}),
};
} else {
try self.setRegOrMem(self.air.typeOfIndex(block), block_data.mcv, operand_mcv);
fn br(self: *Self, inst: Air.Inst.Index, block: Air.Inst.Index, operand: Air.Inst.Ref) !void {
// The first break instruction encounters `.none` here and chooses a
// machine code value for the block result, populating this field.
// Following break instructions encounter that value and use it for
// the location to store their block results.
if (self.getResolvedInstValue(block)) |dst_mcv| {
const src_mcv = try self.resolveInst(operand);
switch (dst_mcv.*) {
.none => {
const result = result: {
if (!self.reuseOperand(inst, operand, 0, src_mcv)) {
const new_mcv = try self.allocRegOrMem(block, true);
try self.setRegOrMem(self.air.typeOfIndex(block), new_mcv, src_mcv);
break :result new_mcv;
}
// the value is actually tracked with block, not inst
switch (src_mcv) {
.register => |reg| if (!self.register_manager.isRegFree(reg)) {
if (RegisterManager.indexOfRegIntoTracked(reg)) |index| {
self.register_manager.registers[index] = block;
}
},
.stack_offset => {},
else => unreachable,
}
break :result src_mcv;
};
dst_mcv.* = result;
},
else => try self.setRegOrMem(self.air.typeOfIndex(block), dst_mcv.*, src_mcv),
}
}
return self.brVoid(block);
@ -7243,17 +7235,17 @@ fn resolveInst(self: *Self, inst: Air.Inst.Ref) InnerError!MCValue {
return gop.value_ptr.*;
},
.const_ty => unreachable,
else => return self.getResolvedInstValue(inst_index).?,
else => return self.getResolvedInstValue(inst_index).?.*,
}
}
fn getResolvedInstValue(self: *Self, inst: Air.Inst.Index) ?MCValue {
fn getResolvedInstValue(self: *Self, inst: Air.Inst.Index) ?*MCValue {
// Treat each stack item as a "layer" on top of the previous one.
var i: usize = self.branch_stack.items.len;
while (true) {
i -= 1;
if (self.branch_stack.items[i].inst_table.get(inst)) |mcv| {
return if (mcv != .dead) mcv else null;
if (self.branch_stack.items[i].inst_table.getPtr(inst)) |mcv| {
return if (mcv.* != .dead) mcv else null;
}
}
}

View File

@ -38,6 +38,8 @@ fn peerTypeTAndOptionalT(c: bool, b: bool) ?usize {
}
test "resolve undefined with integer" {
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
try testResolveUndefWithInt(true, 1234);
comptime try testResolveUndefWithInt(true, 1234);
}
@ -419,7 +421,6 @@ fn testCastIntToErr(err: anyerror) !void {
test "peer resolve array and const slice" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
try testPeerResolveArrayConstSlice(true);
@ -818,7 +819,6 @@ test "peer type resolution: error union after non-error" {
test "peer cast *[0]T to E![]const T" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var buffer: [5]u8 = "abcde".*;
@ -833,7 +833,6 @@ test "peer cast *[0]T to E![]const T" {
test "peer cast *[0]T to []const T" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
var buffer: [5]u8 = "abcde".*;
@ -855,7 +854,6 @@ test "peer cast *[N]T to [*]T" {
test "peer resolution of string literals" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {
@ -1360,7 +1358,6 @@ test "cast f128 to narrower types" {
test "peer type resolution: unreachable, null, slice" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
const S = struct {

View File

@ -904,6 +904,7 @@ test "enum literal casting to tagged union" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
const Arch = union(enum) {
x86_64,

View File

@ -115,6 +115,7 @@ test "if peer expressions inferred optional type" {
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
var self: []const u8 = "abcdef";
var index: usize = 0;

View File

@ -509,7 +509,6 @@ test "return result loc and then switch with range implicit casted to error unio
}
test "switch with null and T peer types and inferred result location type" {
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO