Adds an `include_paths` field to RcSourceFile that takes a slice of LazyPaths. The paths are resolved and subsequently appended to the -rcflags as `/I <resolved path>`.
This fixes an accidental regression from https://github.com/ziglang/zig/pull/19174. Before that PR, all Win32 resource compilation would inherit the CC flags (via `addCCArgs`), which included things like include directories. After that PR, though, that is no longer the case.
However, this commit intentionally does not restore the previous behavior (inheriting the C include paths). Instead, each .rc file will need to have its include paths specified directly and the include paths only apply to one particular resource script. This allows more fine-grained control and has less potentially surprising behavior (at the cost of some convenience).
Closes#19605
This function incorrectly assumed that module name subsections, function
name subsections, and local name subsections are encoded the same,
however according to
[the specification](https://webassembly.github.io/spec/core/appendix/custom.html)
they are encoded differently.
This commit adds support for parsing module name subsections correctly,
which started appearing after upgrading to LLVM 18.
As of Clang 18, calling memcpy() with a misaligned pointer trips UBSAN,
even if the length is zero. This unfortunately includes any call to
`@memcpy` when source or destination are undefined and the length is
zero.
This patch makes the C backend avoid calling memcpy when the length is
zero, thereby avoiding undefined behavior.
A zig1.wasm update will be needed in the llvm18 branch to activate this
code.
wheras on NetBSD, only 2 PT_LOAD are usually produced by other compilers
(tested with host gcc and clang).
$ ldd -v main_4segs
.../main_4segs: wrong number of segments (4 != 2)
.../main_4segs: invalid ELF class 2; expected 1
* Fix the ELF binaries for freestanding target created with the self-hosted linker.
The ELF specification (generic ABI) states that ``loadable process segments must have congruent
values for p_vaddr and p_offset, modulo the page size''. Linux refuses to load binaries that
don't meet this requirement (execve() fails with EINVAL).
A volume can be mounted as a NTFS path, e.g. as C:\Mnt\Foo. In that case, IOCTL_MOUNTMGR_QUERY_POINTS gives us a mount point with a symlink value something like `\??\Volume{383da0b0-717f-41b6-8c36-00500992b58d}`. In order to get the `C:\Mnt\Foo` path, we can query the mountmgr again using IOCTL_MOUNTMGR_QUERY_DOS_VOLUME_PATH.
Fixes#19731
* Adjust buffer length a bit.
* Fix detecting if file is a script. Logic below was unreachable,
because 99% of scripts failed "At least 255 bytes long" check and were detected as ELF files.
It should be "At least 4" instead (minimum value of "ELF magic length" and "smallest possible interpreter path length").
* Fix parsing interpreter path, when text after shebang:
1. does not have newline,
2. has leading spaces and tabs,
3. separates interpreter and arguments by tab or NUL.
* Remove empty error set from `defaultAbiAndDynamicLinker`.
Signed-off-by: Eric Joldasov <bratishkaerik@landless-city.net>
* std.crypto: make ff.ct_unprotected.limbsCmpLt compile
* std.crypto: add ff.ct test
* fix testCt to work on x86
* disable test on stage2-c
---------
Co-authored-by: Frank Denis <124872+jedisct1@users.noreply.github.com>
* define std.crypto.sha2.Sha512224
* rename blunder
* add sha512-224 and sha512-256 tests
* fix Sha2x64 for variations that aren't a multiple of 64 bits
Also removes the LOCK namespace from std.c.wasi because wasi libc does
not have flock.
closes#19336
related to #19352
Co-authored-by: Ryan Liptak <squeek502@hotmail.com>
This is a partial revert of 105db13536b4dc2affe130cb8d2eee6c97c89bcd.
As we learned from Void Linux packaging, these options are not actually
helpful since the distribution package manager may very well want to
cross-compile the packages that it is building.
So, let's not overcomplicate things. There are already the standard
options: -Dtarget, -Dcpu, and -Ddynamic-linker.
These options are generally provided when the project generates machine
code artifacts, however, there may be a project that does no such thing,
in which case it makes sense for these options to be missing. The Zig
Build System is a general-purpose build system, after all.
Certain types (notably, `std.ComptimeStringMap`) were resulting in excessively
long type names when instantiated, which in turn resulted in excessively long
symbol names. These are problematic for two reasons:
* Symbol names are sometimes read by humans -- they ought to be readable.
* Some other applications (looking at you, xcode) trip on very long symbol names.
To work around this for now, we cap the depth of value printing at 1, as opposed
to the normal 3. This doesn't guarantee anything -- there could still be, for
instance, an incredibly long aggregate -- but it works around the issue in
practice for the time being.
When building zig natively from source on an RK3588 SoC board, the
generated stage3 compiler will use unsupported 'sha256h.4s' instructions
due to mis-identified CPU features. This happens when trying to
compile a new project generated with "zig init"
$ ~/devel/zig/build/stage3/bin/zig build
thread 919 panic: Illegal instruction at address 0x1fdc0c4
/home/dliviu/devel/zig/lib/std/crypto/sha2.zig:223:29: 0x1fdc0c4 in round (zig)
asm volatile (
^
/home/dliviu/devel/zig/lib/std/crypto/sha2.zig:168:20: 0x1fdca87 in final (zig)
d.round(&d.buf);
^
/home/dliviu/devel/zig/lib/std/crypto/sha2.zig:180:20: 0x1c8bb33 in finalResult (zig)
d.final(&result);
^
/mnt/home/dliviu/devel/zig/src/Package/Fetch.zig:754:49: 0x1a3a8eb in relativePathDigest (zig)
return Manifest.hexDigest(hasher.finalResult());
^
/mnt/home/dliviu/devel/zig/src/main.zig:5128:53: 0x1a37413 in cmdBuild (zig)
Package.Fetch.relativePathDigest(build_mod.root, global_cache_directory),
^
???:?:?: 0xff09ffffffffffff in ??? (???)
Unwind information for `???:0xff09ffffffffffff` was not available, trace may be incomplete
???:?:?: 0x3f7f137 in ??? (???)
Aborted (core dumped)
system/linux.zig parses "/proc/cpuinfo" to determine the CPU features, but it
seems to generate the wrong set of features from:
$ cat /proc/cpuinfo
processor : 0
BogoMIPS : 48.00
Features : fp asimd evtstrm crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x2
CPU part : 0xd05
CPU revision : 0
.....
processor : 4
BogoMIPS : 48.00
Features : fp asimd evtstrm crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x4
CPU part : 0xd0b
CPU revision : 0
.....
To fix this, use the Linux kernel way of reading the feature registers as documented
here: https://www.kernel.org/doc/html/latest/arch/arm64/cpu-feature-registers.html
arm.zig already has the code to parse the feature register values, we just need to
collect them in an array and pass them for identification.
Signed-off-by: Liviu Dudau <liviu@dudau.co.uk>
The operation `undefined & 0` ought to result in the value `0`, and likewise for
zeroing only some bits. `std/packed_int_array.zig` tests were failing because
this behavior was not implemented -- this issue was previously masked by faulty
bitcast logic which turned `undefined` values into `0xAA` on pointer loads.
Ideally, we would like to be able to track the undefined bits at comptime.
This is related to #19634.
This commit reverts the handling of partially-undefined values in
bitcasting to transform these bits into an arbitrary numeric value,
like happens on `master` today.
As @andrewrk rightly points out, #19634 has unfortunate consequences
for the standard library, and likely requires more thought. To avoid
a major breaking change, it has been decided to revert this design
decision for now, and make a more informed decision further down the
line.