This is all of the expected 0.14.0 progress on #21530, which can now be
postponed once this commit is merged.
This required rewriting the (un)wrap operations since the original
implementations were extremely buggy.
Also adds an easy way to retrigger Sema OPV bugs so that I don't have to
keep updating #22419 all the time.
The original motivation here was to fix regressions caused by #22414.
However, while working on this, I ended up discussing a language
simplification with Andrew, which changes things a little from how they
worked before #22414.
The main user-facing change here is that any reference to a prior
function parameter, even if potentially comptime-known at the usage
site or even not analyzed, now makes a function generic. This applies
even if the parameter being referenced is not a `comptime` parameter,
since it could still be populated when performing an inline call. This
is a breaking language change.
The detection of this is done in AstGen; when evaluating a parameter
type or return type, we track whether it referenced any prior parameter,
and if so, we mark this type as being "generic" in ZIR. This will cause
Sema to not evaluate it until the time of instantiation or inline call.
A lovely consequence of this from an implementation perspective is that
it eliminates the need for most of the "generic poison" system. In
particular, `error.GenericPoison` is now completely unnecessary, because
we identify generic expressions earlier in the pipeline; this simplifies
the compiler and avoids redundant work. This also entirely eliminates
the concept of the "generic poison value". The only remnant of this
system is the "generic poison type" (`Type.generic_poison` and
`InternPool.Index.generic_poison_type`). This type is used in two
places:
* During semantic analysis, to represent an unknown result type.
* When storing generic function types, to represent a generic parameter/return type.
It's possible that these use cases should instead use `.none`, but I
leave that investigation to a future adventurer.
One last thing. Prior to #22414, inline calls were a little inefficient,
because they re-evaluated even non-generic parameter types whenever they
were called. Changing this behavior is what ultimately led to #22538.
Well, because the new logic will mark a type expression as generic if
there is any change its resolved type could differ in an inline call,
this redundant work is unnecessary! So, this is another way in which the
new design reduces redundant work and complexity.
Resolves: #22494Resolves: #22532Resolves: #22538
This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.
This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!
instead of recursion, callers of the function are responsible for
checking the respective tables that might have new entries in them and
then calling lowerZcuData again.
fix some compilation errors for reworked Emit now that it's actually
referenced
introduce DataSegment.Id for sorting data both from object files and
from the Zcu.
introduce optimization: data segment sorting includes a descending sort
on reference count so that references to data can be smaller integers
leading to better LEB encodings. this optimization is skipped for object
files.
implement uav address access function which is based on only 1 hash
table lookup to find out the offset after sorting.
The goals of this branch are to:
* compile faster when using the wasm linker and backend
* enable saving compiler state by directly copying in-memory linker
state to disk.
* more efficient compiler memory utilization
* introduce integer type safety to wasm linker code
* generate better WebAssembly code
* fully participate in incremental compilation
* do as much work as possible outside of flush(), while continuing to do
linker garbage collection.
* avoid unnecessary heap allocations
* avoid unnecessary indirect function calls
In order to accomplish this goals, this removes the ZigObject
abstraction, as well as Symbol and Atom. These abstractions resulted
in overly generic code, doing unnecessary work, and needless
complications that simply go away by creating a better in-memory data
model and emitting more things lazily.
For example, this makes wasm codegen emit MIR which is then lowered to
wasm code during linking, with optimal function indexes etc, or
relocations are emitted if outputting an object. Previously, this would
always emit relocations, which are fully unnecessary when emitting an
executable, and required all function calls to use the maximum size LEB
encoding.
This branch introduces the concept of the "prelink" phase which occurs
after all object files have been parsed, but before any Zcu updates are
sent to the linker. This allows the linker to fully parse all objects
into a compact memory model, which is guaranteed to be complete when Zcu
code is generated.
This commit is not a complete implementation of all these goals; it is
not even passing semantic analysis.
This commit separates semantic analysis of the annotated type vs value
of a global declaration, therefore allowing recursive and mutually
recursive values to be declared.
Every `Nav` which undergoes analysis now has *two* corresponding
`AnalUnit`s: `.{ .nav_val = n }` and `.{ .nav_ty = n }`. The `nav_val`
unit is responsible for *fully resolving* the `Nav`: determining its
value, linksection, addrspace, etc. The `nav_ty` unit, on the other
hand, resolves only the information necessary to construct a *pointer*
to the `Nav`: its type, addrspace, etc. (It does also analyze its
linksection, but that could be moved to `nav_val` I think; it doesn't
make any difference).
Analyzing a `nav_ty` for a declaration with no type annotation will just
mark a dependency on the `nav_val`, analyze it, and finish. Conversely,
analyzing a `nav_val` for a declaration *with* a type annotation will
first mark a dependency on the `nav_ty` and analyze it, using this as
the result type when evaluating the value body.
The `nav_val` and `nav_ty` units always have references to one another:
so, if a `Nav`'s type is referenced, its value implicitly is too, and
vice versa. However, these dependencies are trivial, so, to save memory,
are only known implicitly by logic in `resolveReferences`.
In general, analyzing ZIR `decl_val` will only analyze `nav_ty` of the
corresponding `Nav`. There are two exceptions to this. If the
declaration is an `extern` declaration, then we immediately ensure the
`Nav` value is resolved (which doesn't actually require any more
analysis, since such a declaration has no value body anyway).
Additionally, if the resolved type has type tag `.@"fn"`, we again
immediately resolve the `Nav` value. The latter restriction is in place
for two reasons:
* Functions are special, in that their externs are allowed to trivially
alias; i.e. with a declaration `extern fn foo(...)`, you can write
`const bar = foo;`. This is not allowed for non-function externs, and
it means that function types are the only place where it is possible
for a declaration `Nav` to have a `.@"extern"` value without actually
being declared `extern`. We need to identify this situation
immediately so that the `decl_ref` can create a pointer to the *real*
extern `Nav`, not this alias.
* In certain situations, such as taking a pointer to a `Nav`, Sema needs
to queue analysis of a runtime function if the value is a function. To
do this, the function value needs to be known, so we need to resolve
the value immediately upon `&foo` where `foo` is a function.
This restriction is simple to codify into the eventual language
specification, and doesn't limit the utility of this feature in
practice.
A consequence of this commit is that codegen and linking logic needs to
be more careful when looking at `Nav`s. In general:
* When `updateNav` or `updateFunc` is called, it is safe to assume that
the `Nav` being updated (the owner `Nav` for `updateFunc`) is fully
resolved.
* Any `Nav` whose value is/will be an `@"extern"` or a function is fully
resolved; see `Nav.getExtern` for a helper for a common case here.
* Any other `Nav` may only have its type resolved.
This didn't seem to be too tricky to satisfy in any of the existing
codegen/linker backends.
Resolves: #131
The new representation is often more compact. It is also more
straightforward to understand: for instance, `extern` is represented on
the `declaration` instruction itself rather than using a special
instruction. The same applies to `var`, making both of these far more
compact.
This commit also separates the type and value bodies of a `declaration`
instruction. This is a prerequisite for #131.
In general, `declaration` now directly encodes details of the syntax
form used, and the embedded ZIR bodies are for actual expressions. The
only exception to this is functions, where ZIR is effectively designed
as if we had #1717. `extern fn` declarations are modeled as
`extern const` with a function type, and normal `fn` definitions are
modeled as `const` with a `func{,_fancy,_inferred}` instruction. This
may change in the future, but improving on this was out of scope for
this commit.
This commit reworks how anonymous struct literals and tuples work.
Previously, an untyped anonymous struct literal
(e.g. `const x = .{ .a = 123 }`) was given an "anonymous struct type",
which is a special kind of struct which coerces using structural
equivalence. This mechanism was a holdover from before we used
RLS / result types as the primary mechanism of type inference. This
commit changes the language so that the type assigned here is a "normal"
struct type. It uses a form of equivalence based on the AST node and the
type's structure, much like a reified (`@Type`) type.
Additionally, tuples have been simplified. The distinction between
"simple" and "complex" tuple types is eliminated. All tuples, even those
explicitly declared using `struct { ... }` syntax, use structural
equivalence, and do not undergo staged type resolution. Tuples are very
restricted: they cannot have non-`auto` layouts, cannot have aligned
fields, and cannot have default values with the exception of `comptime`
fields. Tuples currently do not have optimized layout, but this can be
changed in the future.
This change simplifies the language, and fixes some problematic
coercions through pointers which led to unintuitive behavior.
Resolves: #16865
Unfortunately it's not a complete solution, so a follow-up commit will
need to do something more drastic like not do the linker task queue at
the same time as codegen task queue.
From that point, it is possible to do more work at the same time but
that should be a separate branch. This one has gotten big enough.
Most of the required renames here are net wins for readaibility, I'd
say. The ones in `arch` are a little more verbose, but I think better. I
didn't bother renaming the non-conflicting functions in
`arch/arm/bits.zig` and `arch/aarch64/bits.zig`, since these backends
are pretty bit-rotted anyway AIUI.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
This commit makes more progress towards incremental compilation, fixing
some crashes in the frontend. Notably, it fixes the regressions introduced
by #20964. It also cleans up the "outdated file root" mechanism, by
virtue of deleting it: we now detect outdated file roots just after
updating ZIR refs, and re-scan their namespaces.
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.
After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
single unit of analysis is either a runtime function body, or a
`Decl`. It registers incremental dependencies, tracks analysis errors,
etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
and it may be lowered to a specific symbol by the codegen backend.
This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).
Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When #131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.
Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.
This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).
Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.
Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
Now we generate debug undefined constants when the user asks for them to dedup across the function decl. This takes 2 instructions instead of 7 in the RISC-V backend.
TODO, we need to dedupe across function decl boundaries.
This allows the mutate mutex to only be locked during actual grows,
which are rare. For the lists that didn't previously have a mutex, this
change has little effect since grows are rare and there is zero
contention on a mutex that is only ever locked by one thread. This
change allows `extra` to be mutated without racing with a grow.
Primarily, this commit removes 2 fields from File, relying on the data
being stored in the `files` field, with the key as the path digest, and
the value as the struct decl corresponding to the File. This table is
serialized into the compiler state that survives between incremental
updates.
Meanwhile, the File struct remains ephemeral data that can be
reconstructed the first time it is needed by the compiler process, as
well as operated on by independent worker threads.
A key outcome of this commit is that there is now a stable index that
can be used to refer to a File. This will be needed when serializing
error messages to survive incremental compilation updates.
This change modifies `Zcu.ErrorMsg` to store a `Zcu.LazySrcLoc` rather
than a `Zcu.SrcLoc`. Everything else is dominoes.
The reason for this change is incremental compilation. If a failed
`AnalUnit` is up-to-date on an update, we want to re-use the old error
messages. However, the file containing the error location may have been
modified, and `SrcLoc` cannot survive such a modification. `LazySrcLoc`
is designed to be correct across incremental updates. Therefore, we
defer source location resolution until `Compilation` gathers the compile
errors into the `ErrorBundle`.
This patch is a pure rename plus only changing the file path in
`@import` sites, so it is expected to not create version control
conflicts, even when rebasing.