Conflicts:
* lib/std/os/linux.zig
* lib/std/os/windows/bits.zig
* src/Module.zig
* src/Sema.zig
* test/stage2/test.zig
Mainly I wanted Jakub's new macOS code for respecting stack size, since
we now depend on it for debug builds able to pass one of the test cases
for recursive comptime function calls with `@setEvalBranchQuota`.
The conflicts were all trivial.
* Compilation: iteration over the deletion_set only tries to delete the
first one, relying on Decl destroy to remove itself from the deletion
set.
* link: `freeDecl` now has to handle the possibility of freeing a Decl
that was never called with `allocateDeclIndexes`.
* `deleteDecl` recursively iterates over a Decl's Namespace sub-Decl
objects and calls `deleteDecl` on them.
- Prevents Decl objects from being destroyed when they are still in
`deletion_set`.
* Sema: fix cleanup of anonymous Decl objects when an error occurs
during semantic analysis.
* tests: update test cases for fully qualified names
Decl objects need to know whether they are the owner of the Type/Value
associated with them, in order to decide whether to destroy the
associated Namespace, Fn, or Var when cleaning up.
Conflicts:
* doc/langref.html.in
* lib/std/enums.zig
* lib/std/fmt.zig
* lib/std/hash/auto_hash.zig
* lib/std/math.zig
* lib/std/mem.zig
* lib/std/meta.zig
* test/behavior/alignof.zig
* test/behavior/bitcast.zig
* test/behavior/bugs/1421.zig
* test/behavior/cast.zig
* test/behavior/ptrcast.zig
* test/behavior/type_info.zig
* test/behavior/vector.zig
Master branch added `try` to a bunch of testing function calls, and some
lines also had changed how to refer to the native architecture and other
`@import("builtin")` stuff.
* Sema: implement global variables
- Improved global constants to stop needlessly creating a Var
structure; they can just store the value directly.
- This required making memory management a bit more sophisticated to
detect when a Decl owns the Namespace associated with it, for the
purposes of deinitialization.
* Decl.name and Namespace decl table keys no longer directly
reference ZIR; instead they have heap-duped names, so that deleted
decls, which no longer have any ZIR to reference for their names, can
be removed from the parent Namespace table.
- In the future I would like to explore going a different direction
with this, where the strings would still point to the ZIR however
they would be removed from their owner Namespace objects during the
update detection. The design principle here is that the existence
of incremental compilation as a feature should not incur any cost
for the use case when it is not used. In this example Decl names
could simply point to ZIR string table memory, and it is only
because of incremental compilation that we duplicate their names.
* AstGen: implement threadlocal variables
* CLI: call cleanExit after building a compilation so that in release
modes we don't bother freeing memory or closing file descriptors,
allowing the OS to do it more efficiently.
* Avoid calling `freeDecl` in the linker for unreferenced Decl objects.
* Fix CBE test case expecting the compile error to point to the wrong
column.
There are some small problems here and there, mostly due to the pointers
having the lsb set and disrupting the fn alignment tests and the
`@FrameSize` implementation.
The @ptrCast(X, @alignCast(@alignOf(T), Y)) pattern is only correct if T
is not a function type or a pointer, in that case the @alignOf refers to
the pointer itself and not to the pointee type.
The code would previously assume every function would start at addresses
being multiples of 16, this is not true beside some specific cases.
Moreover LLVM picks different alignment values depending on whether it's
trying to generate dense or fast code.
Let's use the minimum guaranteed alignment as base value, computed
according to how big the opcodes are.
The alignment of function pointers is always 1, a safe value that won't
cause any error at runtime. Note that this was already the case before
this commit, here we're making this choice explicit.
Let the 'alignment' field for TypeInfo of fn types reflect the ABI
alignment used by the compiler, make this field behave similarly to the
'alignment' one for pointers.
This was also an experiment to see if it were easier to implement a new
feature when using the instruction encoder.
Verdict: It's not that much easier, but I think it's certainly much more
readable, because the description of the Instruction annotates what each
field means. Right now, precise knowledge of x86_64 instructions is
still required because things like when to set the 64-bit flag, how to
read x86_64 instruction references, etc. are still not automatically
done for you.
In the future, this interface might make it sligtly easier to write an
assembler for x86_64, by abstracting the bit-fiddling aspects of
instruction encoding.
From my very cursory reading, it seems that the register manager doesn't
distinguish between registers that are physically the same but have
different sizes.
In that case, this means that during codegen, we can't rely on
`reg.size()` when determining the width of the operations we have to
perform. Instead, we must use some form of `ty.abiSize(self.target.*)`
to determine the size of the type we're operating with. If this size is
64 bits, then we should enable 64-bit operation.
This fixed a bug in the codegen for spilling instructions, which was
overwriting the previous stack entry with zeroes. See the modified test
case in this commit.
In std.meta.cast when casting to an enum type from an integer type, first
do a C-style cast from the source value to the tag type of the enum.
This ensures that we don't get an error due to the source value not being
representable by the enum.
In transCCast() use std.meta.cast instead of directly emitting the cast
operation since the enum's underlying type may not be known at translation
time due to an MSVC bug, see https://github.com/ziglang/zig/issues/8003Fixes#6011
* AstGen: emit decl lookup ZIR instructions rather than directly
looking up decls in AstGen. This is necessary because we want to
reuse the same immutable ZIR code for multiple generic instantiations
(and comptime function calls).
* AstGen: fix using members_len instead of fields_len for struct decls.
* structs: the struct_decl ZIR instruction is now also a block. This is
so that the type expressions, default field value expressions, and
alignment expressions can be evaluated in a scope that contains the
decls from the struct namespace itself.
* Add "std" and "builtin" packages to the builtin package.
* Don't try to build glibc, musl, or mingw-w64 when using `-ofmt=c`.
* builtin.zig is generated without `usingnamespace`.
* builtin.zig takes advantage of `std.zig.fmtId` for CPU features.
* A first pass at implementing `usingnamespace`. It's problematic and
should either be deleted, or polished, before merging this branch.
* Sema: allow explicitly specifying the namespace in which to look up
Decls. This is used by `struct_decl` in order to put the decls from
the struct namespace itself in scope when evaluating the type
expressions, default value expressions, and alignment expressions.
* Module: fix `analyzeNamespace` assuming that it is the top-level root
declaration node.
* Sema: implement comptime and runtime cmp operator.
* Sema: implement peer type resolution for enums and enum literals.
* Pull in the changes from master branch:
262e09c482d98a78531c049a18b7f24146fe157f.
* ZIR: complete out simple_ptr_type debug printing
Instead of Module setting up the root_scope with the root source file,
instead, Module relies on the package table graph being set up properly,
and inside `update()`, it does the equivalent of `_ = @import("std");`.
This, in term, imports start.zig, which has the logic to call main (or
not). `Module` no longer has `root_scope` - the root source file is no
longer special, it's just in the package table mapped to "root".
I also went ahead and implemented proper detection of updated files.
mtime, inode, size, and source hash are kept in `Scope.File`.
During an update, iterate over `import_table` and stat each file to find
out which ones are updated.
The source hash is redundant with the source hash used by the struct
decl that corresponds to the file, so it should be removed in a future
commit before merging the branch.
* AstGen: add "previously declared here" notes for variables shadowing
decls.
* Parse imports as structs. Module now calls `AstGen.structDeclInner`,
which is called by `AstGen.containerDecl`.
- `importFile` is a bit kludgy with how it handles the top level Decl
that kinda gets merged into the struct decl at the end of the
function. Be on the look out for bugs related to that as well as
possibly cleaner ways to implement this.
* Module: factor out lookupDeclName into lookupIdentifier and lookupNa
* Rename `Scope.Container` to `Scope.Namespace`.
* Delete some dead code.
This branch won't work until `usingnamespace` is implemented because it
relies on `@import("builtin").OutputMode` and `OutputMode` comes from a
`usingnamespace`.
Happy LLVM 12 Release Day.
Please note that the llvm 12 tag does not include the latest commit in
the release/12.x branch, which is in fact a bug fix for a regression
that is causing a failure in Zig's test suite.
Zig master branch is tracking release/12.x, and will be enabling the
test that is fixed by that commit.