Merge pull request #8474 from gracefuu/grace/encode-instruction

stage2 x86_64: encoding helpers, fix bugs
This commit is contained in:
Andrew Kelley 2021-05-09 01:36:51 -04:00 committed by GitHub
commit b88d381dec
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 1214 additions and 220 deletions

View File

@ -4330,6 +4330,33 @@ pub fn intSub(allocator: *Allocator, lhs: Value, rhs: Value) !Value {
}
}
pub fn intMul(allocator: *Allocator, lhs: Value, rhs: Value) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space);
const rhs_bigint = rhs.toBigInt(&rhs_space);
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
var limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
defer allocator.free(limbs_buffer);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, allocator);
const result_limbs = result_bigint.limbs[0..result_bigint.len];
if (result_bigint.positive) {
return Value.Tag.int_big_positive.create(allocator, result_limbs);
} else {
return Value.Tag.int_big_negative.create(allocator, result_limbs);
}
}
pub fn floatAdd(
arena: *Allocator,
float_type: Type,
@ -4396,6 +4423,39 @@ pub fn floatSub(
}
}
pub fn floatMul(
arena: *Allocator,
float_type: Type,
src: LazySrcLoc,
lhs: Value,
rhs: Value,
) !Value {
switch (float_type.tag()) {
.f16 => {
@panic("TODO add __trunctfhf2 to compiler-rt");
//const lhs_val = lhs.toFloat(f16);
//const rhs_val = rhs.toFloat(f16);
//return Value.Tag.float_16.create(arena, lhs_val * rhs_val);
},
.f32 => {
const lhs_val = lhs.toFloat(f32);
const rhs_val = rhs.toFloat(f32);
return Value.Tag.float_32.create(arena, lhs_val * rhs_val);
},
.f64 => {
const lhs_val = lhs.toFloat(f64);
const rhs_val = rhs.toFloat(f64);
return Value.Tag.float_64.create(arena, lhs_val * rhs_val);
},
.f128, .comptime_float, .c_longdouble => {
const lhs_val = lhs.toFloat(f128);
const rhs_val = rhs.toFloat(f128);
return Value.Tag.float_128.create(arena, lhs_val * rhs_val);
},
else => unreachable,
}
}
pub fn simplePtrType(
mod: *Module,
arena: *Allocator,

View File

@ -3864,10 +3864,15 @@ fn analyzeArithmetic(
// incase rhs is 0, simply return lhs without doing any calculations
// TODO Once division is implemented we should throw an error when dividing by 0.
if (rhs_val.compareWithZero(.eq)) {
return sema.mod.constInst(sema.arena, src, .{
.ty = scalar_type,
.val = lhs_val,
});
switch (zir_tag) {
.add, .addwrap, .sub, .subwrap => {
return sema.mod.constInst(sema.arena, src, .{
.ty = scalar_type,
.val = lhs_val,
});
},
else => {},
}
}
const value = switch (zir_tag) {
@ -3885,6 +3890,13 @@ fn analyzeArithmetic(
try Module.floatSub(sema.arena, scalar_type, src, lhs_val, rhs_val);
break :blk val;
},
.mul => blk: {
const val = if (is_int)
try Module.intMul(sema.arena, lhs_val, rhs_val)
else
try Module.floatMul(sema.arena, scalar_type, src, lhs_val, rhs_val);
break :blk val;
},
else => return sema.mod.fail(&block.base, src, "TODO Implement arithmetic operand '{s}'", .{@tagName(zir_tag)}),
};

View File

@ -20,6 +20,8 @@ const build_options = @import("build_options");
const LazySrcLoc = Module.LazySrcLoc;
const RegisterManager = @import("register_manager.zig").RegisterManager;
const X8664Encoder = @import("codegen/x86_64.zig").Encoder;
/// The codegen-related data that is stored in `ir.Inst.Block` instructions.
pub const BlockData = struct {
relocs: std.ArrayListUnmanaged(Reloc) = undefined,
@ -1038,7 +1040,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
},
.val = Value.initTag(.bool_true),
};
return try self.genX8664BinMath(&inst.base, inst.operand, &imm.base, 6, 0x30);
return try self.genX8664BinMath(&inst.base, inst.operand, &imm.base);
},
.arm, .armeb => {
var imm = ir.Inst.Constant{
@ -1062,7 +1064,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
return MCValue.dead;
switch (arch) {
.x86_64 => {
return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs, 0, 0x00);
return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs);
},
.arm, .armeb => return try self.genArmBinOp(&inst.base, inst.lhs, inst.rhs, .add),
else => return self.fail(inst.base.src, "TODO implement add for {}", .{self.target.cpu.arch}),
@ -1083,6 +1085,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
if (inst.base.isUnused())
return MCValue.dead;
switch (arch) {
.x86_64 => return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs),
.arm, .armeb => return try self.genArmMul(&inst.base, inst.lhs, inst.rhs),
else => return self.fail(inst.base.src, "TODO implement mul for {}", .{self.target.cpu.arch}),
}
@ -1361,7 +1364,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
return MCValue.dead;
switch (arch) {
.x86_64 => {
return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs, 5, 0x28);
return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs);
},
.arm, .armeb => return try self.genArmBinOp(&inst.base, inst.lhs, inst.rhs, .sub),
else => return self.fail(inst.base.src, "TODO implement sub for {}", .{self.target.cpu.arch}),
@ -1506,8 +1509,20 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
return dst_mcv;
}
/// Perform "binary" operators, excluding comparisons.
/// Currently, the following ops are supported:
/// ADD, SUB, XOR, OR, AND
fn genX8664BinMath(self: *Self, inst: *ir.Inst, op_lhs: *ir.Inst, op_rhs: *ir.Inst, opx: u8, mr: u8) !MCValue {
fn genX8664BinMath(self: *Self, inst: *ir.Inst, op_lhs: *ir.Inst, op_rhs: *ir.Inst) !MCValue {
// We'll handle these ops in two steps.
// 1) Prepare an output location (register or memory)
// This location will be the location of the operand that dies (if one exists)
// or just a temporary register (if one doesn't exist)
// 2) Perform the op with the other argument
// 3) Sometimes, the output location is memory but the op doesn't support it.
// In this case, copy that location to a register, then perform the op to that register instead.
//
// TODO: make this algorithm less bad
try self.code.ensureCapacity(self.code.items.len + 8);
const lhs = try self.resolveInst(op_lhs);
@ -1568,18 +1583,109 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
else => {},
}
try self.genX8664BinMathCode(inst.src, inst.ty, dst_mcv, src_mcv, opx, mr);
// Now for step 2, we perform the actual op
switch (inst.tag) {
// TODO: Generate wrapping and non-wrapping versions separately
.add, .addwrap => try self.genX8664BinMathCode(inst.src, inst.ty, dst_mcv, src_mcv, 0, 0x00),
.bool_or, .bit_or => try self.genX8664BinMathCode(inst.src, inst.ty, dst_mcv, src_mcv, 1, 0x08),
.bool_and, .bit_and => try self.genX8664BinMathCode(inst.src, inst.ty, dst_mcv, src_mcv, 4, 0x20),
.sub, .subwrap => try self.genX8664BinMathCode(inst.src, inst.ty, dst_mcv, src_mcv, 5, 0x28),
.xor, .not => try self.genX8664BinMathCode(inst.src, inst.ty, dst_mcv, src_mcv, 6, 0x30),
.mul, .mulwrap => try self.genX8664Imul(inst.src, inst.ty, dst_mcv, src_mcv),
else => unreachable,
}
return dst_mcv;
}
/// Wrap over Instruction.encodeInto to translate errors
fn encodeX8664Instruction(
self: *Self,
src: LazySrcLoc,
inst: Instruction,
) !void {
inst.encodeInto(self.code) catch |err| {
if (err == error.OutOfMemory)
return error.OutOfMemory
else
return self.fail(src, "Instruction.encodeInto failed because {s}", .{@errorName(err)});
};
}
/// This function encodes a binary operation for x86_64
/// intended for use with the following opcode ranges
/// because they share the same structure.
///
/// Thus not all binary operations can be used here
/// -- multiplication needs to be done with imul,
/// which doesn't have as convenient an interface.
///
/// "opx"-style instructions use the opcode extension field to indicate which instruction to execute:
///
/// opx = /0: add
/// opx = /1: or
/// opx = /2: adc
/// opx = /3: sbb
/// opx = /4: and
/// opx = /5: sub
/// opx = /6: xor
/// opx = /7: cmp
///
/// opcode | operand shape
/// --------+----------------------
/// 80 /opx | *r/m8*, imm8
/// 81 /opx | *r/m16/32/64*, imm16/32
/// 83 /opx | *r/m16/32/64*, imm8
///
/// "mr"-style instructions use the low bits of opcode to indicate shape of instruction:
///
/// mr = 00: add
/// mr = 08: or
/// mr = 10: adc
/// mr = 18: sbb
/// mr = 20: and
/// mr = 28: sub
/// mr = 30: xor
/// mr = 38: cmp
///
/// opcode | operand shape
/// -------+-------------------------
/// mr + 0 | *r/m8*, r8
/// mr + 1 | *r/m16/32/64*, r16/32/64
/// mr + 2 | *r8*, r/m8
/// mr + 3 | *r16/32/64*, r/m16/32/64
/// mr + 4 | *AL*, imm8
/// mr + 5 | *rAX*, imm16/32
///
/// TODO: rotates and shifts share the same structure, so we can potentially implement them
/// at a later date with very similar code.
/// They have "opx"-style instructions, but no "mr"-style instructions.
///
/// opx = /0: rol,
/// opx = /1: ror,
/// opx = /2: rcl,
/// opx = /3: rcr,
/// opx = /4: shl sal,
/// opx = /5: shr,
/// opx = /6: sal shl,
/// opx = /7: sar,
///
/// opcode | operand shape
/// --------+------------------
/// c0 /opx | *r/m8*, imm8
/// c1 /opx | *r/m16/32/64*, imm8
/// d0 /opx | *r/m8*, 1
/// d1 /opx | *r/m16/32/64*, 1
/// d2 /opx | *r/m8*, CL (for context, CL is register 1)
/// d3 /opx | *r/m16/32/64*, CL (for context, CL is register 1)
fn genX8664BinMathCode(
self: *Self,
src: LazySrcLoc,
dst_ty: Type,
dst_mcv: MCValue,
src_mcv: MCValue,
opx: u8,
opx: u3,
mr: u8,
) !void {
switch (dst_mcv) {
@ -1598,31 +1704,85 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.ptr_stack_offset => unreachable,
.ptr_embedded_in_code => unreachable,
.register => |src_reg| {
self.rex(.{ .b = dst_reg.isExtended(), .r = src_reg.isExtended(), .w = dst_reg.size() == 64 });
self.code.appendSliceAssumeCapacity(&[_]u8{ mr + 0x1, 0xC0 | (@as(u8, src_reg.id() & 0b111) << 3) | @as(u8, dst_reg.id() & 0b111) });
// for register, register use mr + 1
// addressing mode: *r/m16/32/64*, r16/32/64
const abi_size = dst_ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 3);
encoder.rex(.{
.w = abi_size == 8,
.r = src_reg.isExtended(),
.b = dst_reg.isExtended(),
});
encoder.opcode_1byte(mr + 1);
encoder.modRm_direct(
src_reg.low_id(),
dst_reg.low_id(),
);
},
.immediate => |imm| {
const imm32 = @intCast(u31, imm); // This case must be handled before calling genX8664BinMathCode.
// 81 /opx id
if (imm32 <= math.maxInt(u7)) {
self.rex(.{ .b = dst_reg.isExtended(), .w = dst_reg.size() == 64 });
self.code.appendSliceAssumeCapacity(&[_]u8{
0x83,
0xC0 | (opx << 3) | @truncate(u3, dst_reg.id()),
@intCast(u8, imm32),
// register, immediate use opx = 81 or 83 addressing modes:
// opx = 81: r/m16/32/64, imm16/32
// opx = 83: r/m16/32/64, imm8
const imm32 = @intCast(i32, imm); // This case must be handled before calling genX8664BinMathCode.
if (imm32 <= math.maxInt(i8)) {
const abi_size = dst_ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 4);
encoder.rex(.{
.w = abi_size == 8,
.b = dst_reg.isExtended(),
});
encoder.opcode_1byte(0x83);
encoder.modRm_direct(
opx,
dst_reg.low_id(),
);
encoder.imm8(@intCast(i8, imm32));
} else {
self.rex(.{ .r = dst_reg.isExtended(), .w = dst_reg.size() == 64 });
self.code.appendSliceAssumeCapacity(&[_]u8{
0x81,
0xC0 | (opx << 3) | @truncate(u3, dst_reg.id()),
const abi_size = dst_ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 7);
encoder.rex(.{
.w = abi_size == 8,
.b = dst_reg.isExtended(),
});
std.mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), imm32);
encoder.opcode_1byte(0x81);
encoder.modRm_direct(
opx,
dst_reg.low_id(),
);
encoder.imm32(@intCast(i32, imm32));
}
},
.embedded_in_code, .memory, .stack_offset => {
.embedded_in_code, .memory => {
return self.fail(src, "TODO implement x86 ADD/SUB/CMP source memory", .{});
},
.stack_offset => |off| {
// register, indirect use mr + 3
// addressing mode: *r16/32/64*, r/m16/32/64
const abi_size = dst_ty.abiSize(self.target.*);
const adj_off = off + abi_size;
if (off > math.maxInt(i32)) {
return self.fail(src, "stack offset too large", .{});
}
const encoder = try X8664Encoder.init(self.code, 7);
encoder.rex(.{
.w = abi_size == 8,
.r = dst_reg.isExtended(),
});
encoder.opcode_1byte(mr + 3);
if (adj_off <= std.math.maxInt(i8)) {
encoder.modRm_indirectDisp8(
dst_reg.low_id(),
Register.ebp.low_id(),
);
encoder.disp8(-@intCast(i8, adj_off));
} else {
encoder.modRm_indirectDisp32(
dst_reg.low_id(),
Register.ebp.low_id(),
);
encoder.disp32(-@intCast(i32, adj_off));
}
},
.compare_flags_unsigned => {
return self.fail(src, "TODO implement x86 ADD/SUB/CMP source compare flag (unsigned)", .{});
},
@ -1661,28 +1821,184 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
}
}
/// Performs integer multiplication between dst_mcv and src_mcv, storing the result in dst_mcv.
fn genX8664Imul(
self: *Self,
src: LazySrcLoc,
dst_ty: Type,
dst_mcv: MCValue,
src_mcv: MCValue,
) !void {
switch (dst_mcv) {
.none => unreachable,
.undef => unreachable,
.dead, .unreach, .immediate => unreachable,
.compare_flags_unsigned => unreachable,
.compare_flags_signed => unreachable,
.ptr_stack_offset => unreachable,
.ptr_embedded_in_code => unreachable,
.register => |dst_reg| {
switch (src_mcv) {
.none => unreachable,
.undef => try self.genSetReg(src, dst_ty, dst_reg, .undef),
.dead, .unreach => unreachable,
.ptr_stack_offset => unreachable,
.ptr_embedded_in_code => unreachable,
.register => |src_reg| {
// register, register
//
// Use the following imul opcode
// 0F AF /r: IMUL r32/64, r/m32/64
const abi_size = dst_ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 4);
encoder.rex(.{
.w = abi_size == 8,
.r = dst_reg.isExtended(),
.b = src_reg.isExtended(),
});
encoder.opcode_2byte(0x0f, 0xaf);
encoder.modRm_direct(
dst_reg.low_id(),
src_reg.low_id(),
);
},
.immediate => |imm| {
// register, immediate:
// depends on size of immediate.
//
// immediate fits in i8:
// 6B /r ib: IMUL r32/64, r/m32/64, imm8
//
// immediate fits in i32:
// 69 /r id: IMUL r32/64, r/m32/64, imm32
//
// immediate is huge:
// split into 2 instructions
// 1) copy the 64 bit immediate into a tmp register
// 2) perform register,register mul
// 0F AF /r: IMUL r32/64, r/m32/64
if (math.minInt(i8) <= imm and imm <= math.maxInt(i8)) {
const abi_size = dst_ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 4);
encoder.rex(.{
.w = abi_size == 8,
.r = dst_reg.isExtended(),
.b = dst_reg.isExtended(),
});
encoder.opcode_1byte(0x6B);
encoder.modRm_direct(
dst_reg.low_id(),
dst_reg.low_id(),
);
encoder.imm8(@intCast(i8, imm));
} else if (math.minInt(i32) <= imm and imm <= math.maxInt(i32)) {
const abi_size = dst_ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 7);
encoder.rex(.{
.w = abi_size == 8,
.r = dst_reg.isExtended(),
.b = dst_reg.isExtended(),
});
encoder.opcode_1byte(0x69);
encoder.modRm_direct(
dst_reg.low_id(),
dst_reg.low_id(),
);
encoder.imm32(@intCast(i32, imm));
} else {
const src_reg = try self.copyToTmpRegister(src, dst_ty, src_mcv);
return self.genX8664Imul(src, dst_ty, dst_mcv, MCValue{ .register = src_reg });
}
},
.embedded_in_code, .memory, .stack_offset => {
return self.fail(src, "TODO implement x86 multiply source memory", .{});
},
.compare_flags_unsigned => {
return self.fail(src, "TODO implement x86 multiply source compare flag (unsigned)", .{});
},
.compare_flags_signed => {
return self.fail(src, "TODO implement x86 multiply source compare flag (signed)", .{});
},
}
},
.stack_offset => |off| {
switch (src_mcv) {
.none => unreachable,
.undef => return self.genSetStack(src, dst_ty, off, .undef),
.dead, .unreach => unreachable,
.ptr_stack_offset => unreachable,
.ptr_embedded_in_code => unreachable,
.register => |src_reg| {
// copy dst to a register
const dst_reg = try self.copyToTmpRegister(src, dst_ty, dst_mcv);
// multiply into dst_reg
// register, register
// Use the following imul opcode
// 0F AF /r: IMUL r32/64, r/m32/64
const abi_size = dst_ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 4);
encoder.rex(.{
.w = abi_size == 8,
.r = dst_reg.isExtended(),
.b = src_reg.isExtended(),
});
encoder.opcode_2byte(0x0f, 0xaf);
encoder.modRm_direct(
dst_reg.low_id(),
src_reg.low_id(),
);
// copy dst_reg back out
return self.genSetStack(src, dst_ty, off, MCValue{ .register = dst_reg });
},
.immediate => |imm| {
return self.fail(src, "TODO implement x86 multiply source immediate", .{});
},
.embedded_in_code, .memory, .stack_offset => {
return self.fail(src, "TODO implement x86 multiply source memory", .{});
},
.compare_flags_unsigned => {
return self.fail(src, "TODO implement x86 multiply source compare flag (unsigned)", .{});
},
.compare_flags_signed => {
return self.fail(src, "TODO implement x86 multiply source compare flag (signed)", .{});
},
}
},
.embedded_in_code, .memory => {
return self.fail(src, "TODO implement x86 multiply destination memory", .{});
},
}
}
fn genX8664ModRMRegToStack(self: *Self, src: LazySrcLoc, ty: Type, off: u32, reg: Register, opcode: u8) !void {
const abi_size = ty.abiSize(self.target.*);
const adj_off = off + abi_size;
try self.code.ensureCapacity(self.code.items.len + 7);
self.rex(.{ .w = reg.size() == 64, .r = reg.isExtended() });
const reg_id: u8 = @truncate(u3, reg.id());
if (adj_off <= 128) {
// example: 48 89 55 7f mov QWORD PTR [rbp+0x7f],rdx
const RM = @as(u8, 0b01_000_101) | (reg_id << 3);
const negative_offset = @intCast(i8, -@intCast(i32, adj_off));
const twos_comp = @bitCast(u8, negative_offset);
self.code.appendSliceAssumeCapacity(&[_]u8{ opcode, RM, twos_comp });
} else if (adj_off <= 2147483648) {
// example: 48 89 95 80 00 00 00 mov QWORD PTR [rbp+0x80],rdx
const RM = @as(u8, 0b10_000_101) | (reg_id << 3);
const negative_offset = @intCast(i32, -@intCast(i33, adj_off));
const twos_comp = @bitCast(u32, negative_offset);
self.code.appendSliceAssumeCapacity(&[_]u8{ opcode, RM });
mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), twos_comp);
} else {
if (off > math.maxInt(i32)) {
return self.fail(src, "stack offset too large", .{});
}
const i_adj_off = -@intCast(i32, adj_off);
const encoder = try X8664Encoder.init(self.code, 7);
encoder.rex(.{
.w = abi_size == 8,
.r = reg.isExtended(),
});
encoder.opcode_1byte(opcode);
if (i_adj_off < std.math.maxInt(i8)) {
// example: 48 89 55 7f mov QWORD PTR [rbp+0x7f],rdx
encoder.modRm_indirectDisp8(
reg.low_id(),
Register.ebp.low_id(),
);
encoder.disp8(@intCast(i8, i_adj_off));
} else {
// example: 48 89 95 80 00 00 00 mov QWORD PTR [rbp+0x80],rdx
encoder.modRm_indirectDisp32(
reg.low_id(),
Register.ebp.low_id(),
);
encoder.disp32(i_adj_off);
}
}
fn genArgDbgInfo(self: *Self, inst: *ir.Inst.Arg, mcv: MCValue) !void {
@ -2126,12 +2442,13 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
log.debug("got_addr = 0x{x}", .{got_addr});
switch (arch) {
.x86_64 => {
try self.genSetReg(inst.base.src, Type.initTag(.u32), .rax, .{ .memory = got_addr });
try self.genSetReg(inst.base.src, Type.initTag(.u64), .rax, .{ .memory = got_addr });
// callq *%rax
try self.code.ensureCapacity(self.code.items.len + 2);
self.code.appendSliceAssumeCapacity(&[2]u8{ 0xff, 0xd0 });
},
.aarch64 => {
try self.genSetReg(inst.base.src, Type.initTag(.u32), .x30, .{ .memory = got_addr });
try self.genSetReg(inst.base.src, Type.initTag(.u64), .x30, .{ .memory = got_addr });
// blr x30
writeInt(u32, try self.code.addManyAsArray(4), Instruction.blr(.x30).toU32());
},
@ -2355,15 +2672,19 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.register => |reg| blk: {
// test reg, 1
// TODO detect al, ax, eax
try self.code.ensureCapacity(self.code.items.len + 4);
// TODO audit this codegen: we force w = true here to make
// the value affect the big register
self.rex(.{ .b = reg.isExtended(), .w = true });
self.code.appendSliceAssumeCapacity(&[_]u8{
0xf6,
@as(u8, 0xC0) | (0 << 3) | @truncate(u3, reg.id()),
0x01,
const encoder = try X8664Encoder.init(self.code, 4);
encoder.rex(.{
// TODO audit this codegen: we force w = true here to make
// the value affect the big register
.w = true,
.b = reg.isExtended(),
});
encoder.opcode_1byte(0xf6);
encoder.modRm_direct(
0,
reg.low_id(),
);
encoder.disp8(1);
break :blk 0x84;
},
else => return self.fail(inst.base.src, "TODO implement condbr {s} when condition is {s}", .{ self.target.cpu.arch, @tagName(cond) }),
@ -2673,9 +2994,9 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
switch (arch) {
.x86_64 => switch (inst.base.tag) {
// lhs AND rhs
.bool_and => return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs, 4, 0x20),
.bool_and => return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs),
// lhs OR rhs
.bool_or => return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs, 1, 0x08),
.bool_or => return try self.genX8664BinMath(&inst.base, inst.lhs, inst.rhs),
else => unreachable, // Not a boolean operation
},
.arm, .armeb => switch (inst.base.tag) {
@ -2882,39 +3203,6 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
}
}
/// Encodes a REX prefix as specified, and appends it to the instruction
/// stream. This only modifies the instruction stream if at least one bit
/// is set true, which has a few implications:
///
/// * The length of the instruction buffer will be modified *if* the
/// resulting REX is meaningful, but will remain the same if it is not.
/// * Deliberately inserting a "meaningless REX" requires explicit usage of
/// 0x40, and cannot be done via this function.
/// W => 64 bit mode
/// R => extension to the MODRM.reg field
/// X => extension to the SIB.index field
/// B => extension to the MODRM.rm field or the SIB.base field
fn rex(self: *Self, arg: struct { b: bool = false, w: bool = false, x: bool = false, r: bool = false }) void {
comptime assert(arch == .x86_64);
// From section 2.2.1.2 of the manual, REX is encoded as b0100WRXB.
var value: u8 = 0x40;
if (arg.b) {
value |= 0x1;
}
if (arg.x) {
value |= 0x2;
}
if (arg.r) {
value |= 0x4;
}
if (arg.w) {
value |= 0x8;
}
if (value != 0x40) {
self.code.appendAssumeCapacity(value);
}
}
/// Sets the value without any modifications to register allocation metadata or stack allocation metadata.
fn setRegOrMem(self: *Self, src: LazySrcLoc, ty: Type, loc: MCValue, val: MCValue) !void {
switch (loc) {
@ -3462,20 +3750,25 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
}
},
.compare_flags_unsigned => |op| {
try self.code.ensureCapacity(self.code.items.len + 3);
const encoder = try X8664Encoder.init(self.code, 7);
// TODO audit this codegen: we force w = true here to make
// the value affect the big register
self.rex(.{ .b = reg.isExtended(), .w = true });
const opcode: u8 = switch (op) {
encoder.rex(.{
.w = true,
.b = reg.isExtended(),
});
encoder.opcode_2byte(0x0f, switch (op) {
.gte => 0x93,
.gt => 0x97,
.neq => 0x95,
.lt => 0x92,
.lte => 0x96,
.eq => 0x94,
};
const id = @as(u8, reg.id() & 0b111);
self.code.appendSliceAssumeCapacity(&[_]u8{ 0x0f, opcode, 0xC0 | id });
});
encoder.modRm_direct(
0,
reg.low_id(),
);
},
.compare_flags_signed => |op| {
return self.fail(src, "TODO set register with compare flags value (signed)", .{});
@ -3485,40 +3778,43 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// register is the fastest way to zero a register.
if (x == 0) {
// The encoding for `xor r32, r32` is `0x31 /r`.
// Section 3.1.1.1 of the Intel x64 Manual states that "/r indicates that the
// ModR/M byte of the instruction contains a register operand and an r/m operand."
//
// R/M bytes are composed of two bits for the mode, then three bits for the register,
// then three bits for the operand. Since we're zeroing a register, the two three-bit
// values will be identical, and the mode is three (the raw register value).
//
const encoder = try X8664Encoder.init(self.code, 3);
// If we're accessing e.g. r8d, we need to use a REX prefix before the actual operation. Since
// this is a 32-bit operation, the W flag is set to zero. X is also zero, as we're not using a SIB.
// Both R and B are set, as we're extending, in effect, the register bits *and* the operand.
try self.code.ensureCapacity(self.code.items.len + 3);
self.rex(.{ .r = reg.isExtended(), .b = reg.isExtended() });
const id = @as(u8, reg.id() & 0b111);
self.code.appendSliceAssumeCapacity(&[_]u8{ 0x31, 0xC0 | id << 3 | id });
encoder.rex(.{
.r = reg.isExtended(),
.b = reg.isExtended(),
});
encoder.opcode_1byte(0x31);
// Section 3.1.1.1 of the Intel x64 Manual states that "/r indicates that the
// ModR/M byte of the instruction contains a register operand and an r/m operand."
encoder.modRm_direct(
reg.low_id(),
reg.low_id(),
);
return;
}
if (x <= math.maxInt(u32)) {
if (x <= math.maxInt(i32)) {
// Next best case: if we set the lower four bytes, the upper four will be zeroed.
//
// The encoding for `mov IMM32 -> REG` is (0xB8 + R) IMM.
if (reg.isExtended()) {
// Just as with XORing, we need a REX prefix. This time though, we only
// need the B bit set, as we're extending the opcode's register field,
// and there is no Mod R/M byte.
//
// Thus, we need b01000001, or 0x41.
try self.code.resize(self.code.items.len + 6);
self.code.items[self.code.items.len - 6] = 0x41;
} else {
try self.code.resize(self.code.items.len + 5);
}
self.code.items[self.code.items.len - 5] = 0xB8 | @as(u8, reg.id() & 0b111);
const imm_ptr = self.code.items[self.code.items.len - 4 ..][0..4];
mem.writeIntLittle(u32, imm_ptr, @intCast(u32, x));
const encoder = try X8664Encoder.init(self.code, 6);
// Just as with XORing, we need a REX prefix. This time though, we only
// need the B bit set, as we're extending the opcode's register field,
// and there is no Mod R/M byte.
encoder.rex(.{
.b = reg.isExtended(),
});
encoder.opcode_withReg(0xB8, reg.low_id());
// no ModR/M byte
// IMM
encoder.imm32(@intCast(i32, x));
return;
}
// Worst case: we need to load the 64-bit register with the IMM. GNU's assemblers calls
@ -3528,79 +3824,98 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// This encoding is, in fact, the *same* as the one used for 32-bit loads. The only
// difference is that we set REX.W before the instruction, which extends the load to
// 64-bit and uses the full bit-width of the register.
//
// Since we always need a REX here, let's just check if we also need to set REX.B.
//
// In this case, the encoding of the REX byte is 0b0100100B
try self.code.ensureCapacity(self.code.items.len + 10);
self.rex(.{ .w = reg.size() == 64, .b = reg.isExtended() });
self.code.items.len += 9;
self.code.items[self.code.items.len - 9] = 0xB8 | @as(u8, reg.id() & 0b111);
const imm_ptr = self.code.items[self.code.items.len - 8 ..][0..8];
mem.writeIntLittle(u64, imm_ptr, x);
{
const encoder = try X8664Encoder.init(self.code, 10);
encoder.rex(.{
.w = true,
.b = reg.isExtended(),
});
encoder.opcode_withReg(0xB8, reg.low_id());
encoder.imm64(x);
}
},
.embedded_in_code => |code_offset| {
// We need the offset from RIP in a signed i32 twos complement.
// The instruction is 7 bytes long and RIP points to the next instruction.
try self.code.ensureCapacity(self.code.items.len + 7);
// 64-bit LEA is encoded as REX.W 8D /r. If the register is extended, the REX byte is modified,
// but the operation size is unchanged. Since we're using a disp32, we want mode 0 and lower three
// bits as five.
// REX 0x8D 0b00RRR101, where RRR is the lower three bits of the id.
self.rex(.{ .w = reg.size() == 64, .b = reg.isExtended() });
self.code.items.len += 6;
const rip = self.code.items.len;
// 64-bit LEA is encoded as REX.W 8D /r.
const rip = self.code.items.len + 7;
const big_offset = @intCast(i64, code_offset) - @intCast(i64, rip);
const offset = @intCast(i32, big_offset);
self.code.items[self.code.items.len - 6] = 0x8D;
self.code.items[self.code.items.len - 5] = 0b101 | (@as(u8, reg.id() & 0b111) << 3);
const imm_ptr = self.code.items[self.code.items.len - 4 ..][0..4];
mem.writeIntLittle(i32, imm_ptr, offset);
const encoder = try X8664Encoder.init(self.code, 7);
// byte 1, always exists because w = true
encoder.rex(.{
.w = true,
.r = reg.isExtended(),
});
// byte 2
encoder.opcode_1byte(0x8D);
// byte 3
encoder.modRm_RIPDisp32(reg.low_id());
// byte 4-7
encoder.disp32(offset);
// Double check that we haven't done any math errors
assert(rip == self.code.items.len);
},
.register => |src_reg| {
// If the registers are the same, nothing to do.
if (src_reg.id() == reg.id())
return;
// This is a variant of 8B /r. Since we're using 64-bit moves, we require a REX.
// This is thus three bytes: REX 0x8B R/M.
// If the destination is extended, the R field must be 1.
// If the *source* is extended, the B field must be 1.
// Since the register is being accessed directly, the R/M mode is three. The reg field (the middle
// three bits) contain the destination, and the R/M field (the lower three bits) contain the source.
try self.code.ensureCapacity(self.code.items.len + 3);
self.rex(.{ .w = reg.size() == 64, .r = reg.isExtended(), .b = src_reg.isExtended() });
const R = 0xC0 | (@as(u8, reg.id() & 0b111) << 3) | @as(u8, src_reg.id() & 0b111);
self.code.appendSliceAssumeCapacity(&[_]u8{ 0x8B, R });
// This is a variant of 8B /r.
const abi_size = ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 3);
encoder.rex(.{
.w = abi_size == 8,
.r = reg.isExtended(),
.b = src_reg.isExtended(),
});
encoder.opcode_1byte(0x8B);
encoder.modRm_direct(reg.low_id(), src_reg.low_id());
},
.memory => |x| {
if (self.bin_file.options.pie) {
// RIP-relative displacement to the entry in the GOT table.
const abi_size = ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 10);
// LEA reg, [<offset>]
// We encode the instruction FIRST because prefixes may or may not appear.
// After we encode the instruction, we will know that the displacement bytes
// for [<offset>] will be at self.code.items.len - 4.
encoder.rex(.{
.w = true, // force 64 bit because loading an address (to the GOT)
.r = reg.isExtended(),
});
encoder.opcode_1byte(0x8D);
encoder.modRm_RIPDisp32(reg.low_id());
encoder.disp32(0);
// TODO we should come up with our own, backend independent relocation types
// which each backend (Elf, MachO, etc.) would then translate into an actual
// fixup when linking.
if (self.bin_file.cast(link.File.MachO)) |macho_file| {
try macho_file.pie_fixups.append(self.bin_file.allocator, .{
.target_addr = x,
.offset = self.code.items.len + 3,
.offset = self.code.items.len - 4,
.size = 4,
});
} else {
return self.fail(src, "TODO implement genSetReg for PIE GOT indirection on this platform", .{});
}
try self.code.ensureCapacity(self.code.items.len + 7);
self.rex(.{ .w = reg.size() == 64, .r = reg.isExtended() });
self.code.appendSliceAssumeCapacity(&[_]u8{
0x8D,
0x05 | (@as(u8, reg.id() & 0b111) << 3),
});
mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), 0);
try self.code.ensureCapacity(self.code.items.len + 3);
self.rex(.{ .w = reg.size() == 64, .b = reg.isExtended(), .r = reg.isExtended() });
const RM = (@as(u8, reg.id() & 0b111) << 3) | @truncate(u3, reg.id());
self.code.appendSliceAssumeCapacity(&[_]u8{ 0x8B, RM });
} else if (x <= math.maxInt(u32)) {
// MOV reg, [reg]
encoder.rex(.{
.w = abi_size == 8,
.r = reg.isExtended(),
.b = reg.isExtended(),
});
encoder.opcode_1byte(0x8B);
encoder.modRm_indirectDisp0(reg.low_id(), reg.low_id());
} else if (x <= math.maxInt(i32)) {
// Moving from memory to a register is a variant of `8B /r`.
// Since we're using 64-bit moves, we require a REX.
// This variant also requires a SIB, as it would otherwise be RIP-relative.
@ -3608,14 +3923,18 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// The SIB must be 0x25, to indicate a disp32 with no scaled index.
// 0b00RRR100, where RRR is the lower three bits of the register ID.
// The instruction is thus eight bytes; REX 0x8B 0b00RRR100 0x25 followed by a four-byte disp32.
try self.code.ensureCapacity(self.code.items.len + 8);
self.rex(.{ .w = reg.size() == 64, .b = reg.isExtended() });
self.code.appendSliceAssumeCapacity(&[_]u8{
0x8B,
0x04 | (@as(u8, reg.id() & 0b111) << 3), // R
0x25,
const abi_size = ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 8);
encoder.rex(.{
.w = abi_size == 8,
.r = reg.isExtended(),
});
mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), @intCast(u32, x));
encoder.opcode_1byte(0x8B);
// effective address = [SIB]
encoder.modRm_SIBDisp0(reg.low_id());
// SIB = disp32
encoder.sib_disp32();
encoder.disp32(@intCast(i32, x));
} else {
// If this is RAX, we can use a direct load; otherwise, we need to load the address, then indirectly load
// the value.
@ -3623,12 +3942,13 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// REX.W 0xA1 moffs64*
// moffs64* is a 64-bit offset "relative to segment base", which really just means the
// absolute address for all practical purposes.
try self.code.resize(self.code.items.len + 10);
// REX.W == 0x48
self.code.items[self.code.items.len - 10] = 0x48;
self.code.items[self.code.items.len - 9] = 0xA1;
const imm_ptr = self.code.items[self.code.items.len - 8 ..][0..8];
mem.writeIntLittle(u64, imm_ptr, x);
const encoder = try X8664Encoder.init(self.code, 10);
encoder.rex(.{
.w = true,
});
encoder.opcode_1byte(0xA1);
encoder.writeIntLittle(u64, x);
} else {
// This requires two instructions; a move imm as used above, followed by an indirect load using the register
// as the address and the register as the destination.
@ -3645,41 +3965,42 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// Now, the register contains the address of the value to load into it
// Currently, we're only allowing 64-bit registers, so we need the `REX.W 8B /r` variant.
// TODO: determine whether to allow other sized registers, and if so, handle them properly.
// This operation requires three bytes: REX 0x8B R/M
try self.code.ensureCapacity(self.code.items.len + 3);
// For this operation, we want R/M mode *zero* (use register indirectly), and the two register
// values must match. Thus, it's 00ABCABC where ABC is the lower three bits of the register ID.
//
// Furthermore, if this is an extended register, both B and R must be set in the REX byte, as *both*
// register operands need to be marked as extended.
self.rex(.{ .w = reg.size() == 64, .b = reg.isExtended(), .r = reg.isExtended() });
const RM = (@as(u8, reg.id() & 0b111) << 3) | @truncate(u3, reg.id());
self.code.appendSliceAssumeCapacity(&[_]u8{ 0x8B, RM });
// mov reg, [reg]
const abi_size = ty.abiSize(self.target.*);
const encoder = try X8664Encoder.init(self.code, 3);
encoder.rex(.{
.w = abi_size == 8,
.r = reg.isExtended(),
.b = reg.isExtended(),
});
encoder.opcode_1byte(0x8B);
encoder.modRm_indirectDisp0(reg.low_id(), reg.low_id());
}
}
},
.stack_offset => |unadjusted_off| {
try self.code.ensureCapacity(self.code.items.len + 7);
const size_bytes = @divExact(reg.size(), 8);
const off = unadjusted_off + size_bytes;
self.rex(.{ .w = reg.size() == 64, .r = reg.isExtended() });
const reg_id: u8 = @truncate(u3, reg.id());
if (off <= 128) {
// Example: 48 8b 4d 7f mov rcx,QWORD PTR [rbp+0x7f]
const RM = @as(u8, 0b01_000_101) | (reg_id << 3);
const negative_offset = @intCast(i8, -@intCast(i32, off));
const twos_comp = @bitCast(u8, negative_offset);
self.code.appendSliceAssumeCapacity(&[_]u8{ 0x8b, RM, twos_comp });
} else if (off <= 2147483648) {
// Example: 48 8b 8d 80 00 00 00 mov rcx,QWORD PTR [rbp+0x80]
const RM = @as(u8, 0b10_000_101) | (reg_id << 3);
const negative_offset = @intCast(i32, -@intCast(i33, off));
const twos_comp = @bitCast(u32, negative_offset);
self.code.appendSliceAssumeCapacity(&[_]u8{ 0x8b, RM });
mem.writeIntLittle(u32, self.code.addManyAsArrayAssumeCapacity(4), twos_comp);
} else {
const abi_size = ty.abiSize(self.target.*);
const off = unadjusted_off + abi_size;
if (off < std.math.minInt(i32) or off > std.math.maxInt(i32)) {
return self.fail(src, "stack offset too large", .{});
}
const ioff = -@intCast(i32, off);
const encoder = try X8664Encoder.init(self.code, 3);
encoder.rex(.{
.w = abi_size == 8,
.r = reg.isExtended(),
});
encoder.opcode_1byte(0x8B);
if (std.math.minInt(i8) <= ioff and ioff <= std.math.maxInt(i8)) {
// Example: 48 8b 4d 7f mov rcx,QWORD PTR [rbp+0x7f]
encoder.modRm_indirectDisp8(reg.low_id(), Register.ebp.low_id());
encoder.disp8(@intCast(i8, ioff));
} else {
// Example: 48 8b 8d 80 00 00 00 mov rcx,QWORD PTR [rbp+0x80]
encoder.modRm_indirectDisp32(reg.low_id(), Register.ebp.low_id());
encoder.disp32(ioff);
}
},
},
else => return self.fail(src, "TODO implement getSetReg for {}", .{self.target.cpu.arch}),

View File

@ -1,4 +1,9 @@
const std = @import("std");
const testing = std.testing;
const mem = std.mem;
const assert = std.debug.assert;
const ArrayList = std.ArrayList;
const Allocator = std.mem.Allocator;
const Type = @import("../Type.zig");
const DW = std.dwarf;
@ -68,6 +73,11 @@ pub const Register = enum(u8) {
return @truncate(u4, @enumToInt(self));
}
/// Like id, but only returns the lower 3 bits.
pub fn low_id(self: Register) u3 {
return @truncate(u3, @enumToInt(self));
}
/// Returns the index into `callee_preserved_regs`.
pub fn allocIndex(self: Register) ?u4 {
return switch (self) {
@ -136,6 +146,493 @@ pub const callee_preserved_regs = [_]Register{ .rax, .rcx, .rdx, .rsi, .rdi, .r8
pub const c_abi_int_param_regs = [_]Register{ .rdi, .rsi, .rdx, .rcx, .r8, .r9 };
pub const c_abi_int_return_regs = [_]Register{ .rax, .rdx };
/// Encoding helper functions for x86_64 instructions
///
/// Many of these helpers do very little, but they can help make things
/// slightly more readable with more descriptive field names / function names.
///
/// Some of them also have asserts to ensure that we aren't doing dumb things.
/// For example, trying to use register 4 (esp) in an indirect modr/m byte is illegal,
/// you need to encode it with an SIB byte.
///
/// Note that ALL of these helper functions will assume capacity,
/// so ensure that the `code` has sufficient capacity before using them.
/// The `init` method is the recommended way to ensure capacity.
pub const Encoder = struct {
/// Non-owning reference to the code array
code: *ArrayList(u8),
const Self = @This();
/// Wrap `code` in Encoder to make it easier to call these helper functions
///
/// maximum_inst_size should contain the maximum number of bytes
/// that the encoded instruction will take.
/// This is because the helper functions will assume capacity
/// in order to avoid bounds checking.
pub fn init(code: *ArrayList(u8), maximum_inst_size: u8) !Self {
try code.ensureCapacity(code.items.len + maximum_inst_size);
return Self{ .code = code };
}
/// Directly write a number to the code array with big endianness
pub fn writeIntBig(self: Self, comptime T: type, value: T) void {
mem.writeIntBig(
T,
self.code.addManyAsArrayAssumeCapacity(@divExact(@typeInfo(T).Int.bits, 8)),
value,
);
}
/// Directly write a number to the code array with little endianness
pub fn writeIntLittle(self: Self, comptime T: type, value: T) void {
mem.writeIntLittle(
T,
self.code.addManyAsArrayAssumeCapacity(@divExact(@typeInfo(T).Int.bits, 8)),
value,
);
}
// --------
// Prefixes
// --------
pub const LegacyPrefixes = packed struct {
/// LOCK
prefix_f0: bool = false,
/// REPNZ, REPNE, REP, Scalar Double-precision
prefix_f2: bool = false,
/// REPZ, REPE, REP, Scalar Single-precision
prefix_f3: bool = false,
/// CS segment override or Branch not taken
prefix_2e: bool = false,
/// DS segment override
prefix_36: bool = false,
/// ES segment override
prefix_26: bool = false,
/// FS segment override
prefix_64: bool = false,
/// GS segment override
prefix_65: bool = false,
/// Branch taken
prefix_3e: bool = false,
/// Operand size override (enables 16 bit operation)
prefix_66: bool = false,
/// Address size override (enables 16 bit address size)
prefix_67: bool = false,
padding: u5 = 0,
};
/// Encodes legacy prefixes
pub fn legacyPrefixes(self: Self, prefixes: LegacyPrefixes) void {
if (@bitCast(u16, prefixes) != 0) {
// Hopefully this path isn't taken very often, so we'll do it the slow way for now
// LOCK
if (prefixes.prefix_f0) self.code.appendAssumeCapacity(0xf0);
// REPNZ, REPNE, REP, Scalar Double-precision
if (prefixes.prefix_f2) self.code.appendAssumeCapacity(0xf2);
// REPZ, REPE, REP, Scalar Single-precision
if (prefixes.prefix_f3) self.code.appendAssumeCapacity(0xf3);
// CS segment override or Branch not taken
if (prefixes.prefix_2e) self.code.appendAssumeCapacity(0x2e);
// DS segment override
if (prefixes.prefix_36) self.code.appendAssumeCapacity(0x36);
// ES segment override
if (prefixes.prefix_26) self.code.appendAssumeCapacity(0x26);
// FS segment override
if (prefixes.prefix_64) self.code.appendAssumeCapacity(0x64);
// GS segment override
if (prefixes.prefix_65) self.code.appendAssumeCapacity(0x65);
// Branch taken
if (prefixes.prefix_3e) self.code.appendAssumeCapacity(0x3e);
// Operand size override
if (prefixes.prefix_66) self.code.appendAssumeCapacity(0x66);
// Address size override
if (prefixes.prefix_67) self.code.appendAssumeCapacity(0x67);
}
}
/// Use 16 bit operand size
///
/// Note that this flag is overridden by REX.W, if both are present.
pub fn prefix16BitMode(self: Self) void {
self.code.appendAssumeCapacity(0x66);
}
/// From section 2.2.1.2 of the manual, REX is encoded as b0100WRXB
pub const Rex = struct {
/// Wide, enables 64-bit operation
w: bool = false,
/// Extends the reg field in the ModR/M byte
r: bool = false,
/// Extends the index field in the SIB byte
x: bool = false,
/// Extends the r/m field in the ModR/M byte,
/// or the base field in the SIB byte,
/// or the reg field in the Opcode byte
b: bool = false,
};
/// Encodes a REX prefix byte given all the fields
///
/// Use this byte whenever you need 64 bit operation,
/// or one of reg, index, r/m, base, or opcode-reg might be extended.
///
/// See struct `Rex` for a description of each field.
///
/// Does not add a prefix byte if none of the fields are set!
pub fn rex(self: Self, byte: Rex) void {
var value: u8 = 0b0100_0000;
if (byte.w) value |= 0b1000;
if (byte.r) value |= 0b0100;
if (byte.x) value |= 0b0010;
if (byte.b) value |= 0b0001;
if (value != 0b0100_0000) {
self.code.appendAssumeCapacity(value);
}
}
// ------
// Opcode
// ------
/// Encodes a 1 byte opcode
pub fn opcode_1byte(self: Self, opcode: u8) void {
self.code.appendAssumeCapacity(opcode);
}
/// Encodes a 2 byte opcode
///
/// e.g. IMUL has the opcode 0x0f 0xaf, so you use
///
/// encoder.opcode_2byte(0x0f, 0xaf);
pub fn opcode_2byte(self: Self, prefix: u8, opcode: u8) void {
self.code.appendAssumeCapacity(prefix);
self.code.appendAssumeCapacity(opcode);
}
/// Encodes a 1 byte opcode with a reg field
///
/// Remember to add a REX prefix byte if reg is extended!
pub fn opcode_withReg(self: Self, opcode: u8, reg: u3) void {
assert(opcode & 0b111 == 0);
self.code.appendAssumeCapacity(opcode | reg);
}
// ------
// ModR/M
// ------
/// Construct a ModR/M byte given all the fields
///
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm(self: Self, mod: u2, reg_or_opx: u3, rm: u3) void {
self.code.appendAssumeCapacity(
@as(u8, mod) << 6 | @as(u8, reg_or_opx) << 3 | rm,
);
}
/// Construct a ModR/M byte using direct r/m addressing
/// r/m effective address: r/m
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_direct(self: Self, reg_or_opx: u3, rm: u3) void {
self.modRm(0b11, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect r/m addressing
/// r/m effective address: [r/m]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_indirectDisp0(self: Self, reg_or_opx: u3, rm: u3) void {
assert(rm != 4 and rm != 5);
self.modRm(0b00, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect SIB addressing
/// r/m effective address: [SIB]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_SIBDisp0(self: Self, reg_or_opx: u3) void {
self.modRm(0b00, reg_or_opx, 0b100);
}
/// Construct a ModR/M byte using RIP-relative addressing
/// r/m effective address: [RIP + disp32]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_RIPDisp32(self: Self, reg_or_opx: u3) void {
self.modRm(0b00, reg_or_opx, 0b101);
}
/// Construct a ModR/M byte using indirect r/m with a 8bit displacement
/// r/m effective address: [r/m + disp8]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_indirectDisp8(self: Self, reg_or_opx: u3, rm: u3) void {
assert(rm != 4);
self.modRm(0b01, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect SIB with a 8bit displacement
/// r/m effective address: [SIB + disp8]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_SIBDisp8(self: Self, reg_or_opx: u3) void {
self.modRm(0b01, reg_or_opx, 0b100);
}
/// Construct a ModR/M byte using indirect r/m with a 32bit displacement
/// r/m effective address: [r/m + disp32]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_indirectDisp32(self: Self, reg_or_opx: u3, rm: u3) void {
assert(rm != 4);
self.modRm(0b10, reg_or_opx, rm);
}
/// Construct a ModR/M byte using indirect SIB with a 32bit displacement
/// r/m effective address: [SIB + disp32]
///
/// Note reg's effective address is always just reg for the ModR/M byte.
/// Remember to add a REX prefix byte if reg or rm are extended!
pub fn modRm_SIBDisp32(self: Self, reg_or_opx: u3) void {
self.modRm(0b10, reg_or_opx, 0b100);
}
// ---
// SIB
// ---
/// Construct a SIB byte given all the fields
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib(self: Self, scale: u2, index: u3, base: u3) void {
self.code.appendAssumeCapacity(
@as(u8, scale) << 6 | @as(u8, index) << 3 | base,
);
}
/// Construct a SIB byte with scale * index + base, no frills.
/// r/m effective address: [base + scale * index]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexBase(self: Self, scale: u2, index: u3, base: u3) void {
assert(base != 5);
self.sib(scale, index, base);
}
/// Construct a SIB byte with scale * index + disp32
/// r/m effective address: [scale * index + disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexDisp32(self: Self, scale: u2, index: u3) void {
assert(index != 4);
// scale is actually ignored
// index = 4 means no index
// base = 5 means no base, if mod == 0.
self.sib(scale, index, 5);
}
/// Construct a SIB byte with just base
/// r/m effective address: [base]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_base(self: Self, base: u3) void {
assert(base != 5);
// scale is actually ignored
// index = 4 means no index
self.sib(0, 4, base);
}
/// Construct a SIB byte with just disp32
/// r/m effective address: [disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_disp32(self: Self) void {
// scale is actually ignored
// index = 4 means no index
// base = 5 means no base, if mod == 0.
self.sib(0, 4, 5);
}
/// Construct a SIB byte with scale * index + base + disp8
/// r/m effective address: [base + scale * index + disp8]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexBaseDisp8(self: Self, scale: u2, index: u3, base: u3) void {
self.sib(scale, index, base);
}
/// Construct a SIB byte with base + disp8, no index
/// r/m effective address: [base + disp8]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_baseDisp8(self: Self, base: u3) void {
// scale is ignored
// index = 4 means no index
self.sib(0, 4, base);
}
/// Construct a SIB byte with scale * index + base + disp32
/// r/m effective address: [base + scale * index + disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_scaleIndexBaseDisp32(self: Self, scale: u2, index: u3, base: u3) void {
self.sib(scale, index, base);
}
/// Construct a SIB byte with base + disp32, no index
/// r/m effective address: [base + disp32]
///
/// Remember to add a REX prefix byte if index or base are extended!
pub fn sib_baseDisp32(self: Self, base: u3) void {
// scale is ignored
// index = 4 means no index
self.sib(0, 4, base);
}
// -------------------------
// Trivial (no bit fiddling)
// -------------------------
/// Encode an 8 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm8(self: Self, imm: i8) void {
self.code.appendAssumeCapacity(@bitCast(u8, imm));
}
/// Encode an 8 bit displacement
///
/// It is sign-extended to 64 bits by the cpu.
pub fn disp8(self: Self, disp: i8) void {
self.code.appendAssumeCapacity(@bitCast(u8, disp));
}
/// Encode an 16 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm16(self: Self, imm: i16) void {
self.writeIntLittle(i16, imm);
}
/// Encode an 32 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm32(self: Self, imm: i32) void {
self.writeIntLittle(i32, imm);
}
/// Encode an 32 bit displacement
///
/// It is sign-extended to 64 bits by the cpu.
pub fn disp32(self: Self, disp: i32) void {
self.writeIntLittle(i32, disp);
}
/// Encode an 64 bit immediate
///
/// It is sign-extended to 64 bits by the cpu.
pub fn imm64(self: Self, imm: u64) void {
self.writeIntLittle(u64, imm);
}
};
test "x86_64 Encoder helpers" {
var code = ArrayList(u8).init(testing.allocator);
defer code.deinit();
// simple integer multiplication
// imul eax,edi
// 0faf c7
{
try code.resize(0);
const encoder = try Encoder.init(&code, 4);
encoder.rex(.{
.r = Register.eax.isExtended(),
.b = Register.edi.isExtended(),
});
encoder.opcode_2byte(0x0f, 0xaf);
encoder.modRm_direct(
Register.eax.low_id(),
Register.edi.low_id(),
);
testing.expectEqualSlices(u8, &[_]u8{ 0x0f, 0xaf, 0xc7 }, code.items);
}
// simple mov
// mov eax,edi
// 89 f8
{
try code.resize(0);
const encoder = try Encoder.init(&code, 3);
encoder.rex(.{
.r = Register.edi.isExtended(),
.b = Register.eax.isExtended(),
});
encoder.opcode_1byte(0x89);
encoder.modRm_direct(
Register.edi.low_id(),
Register.eax.low_id(),
);
testing.expectEqualSlices(u8, &[_]u8{ 0x89, 0xf8 }, code.items);
}
// signed integer addition of 32-bit sign extended immediate to 64 bit register
// add rcx, 2147483647
//
// Using the following opcode: REX.W + 81 /0 id, we expect the following encoding
//
// 48 : REX.W set for 64 bit operand (*r*cx)
// 81 : opcode for "<arithmetic> with immediate"
// c1 : id = rcx,
// : c1 = 11 <-- mod = 11 indicates r/m is register (rcx)
// : 000 <-- opcode_extension = 0 because opcode extension is /0. /0 specifies ADD
// : 001 <-- 001 is rcx
// ffffff7f : 2147483647
{
try code.resize(0);
const encoder = try Encoder.init(&code, 7);
encoder.rex(.{ .w = true }); // use 64 bit operation
encoder.opcode_1byte(0x81);
encoder.modRm_direct(
0,
Register.rcx.low_id(),
);
encoder.imm32(2147483647);
testing.expectEqualSlices(u8, &[_]u8{ 0x48, 0x81, 0xc1, 0xff, 0xff, 0xff, 0x7f }, code.items);
}
}
// TODO add these registers to the enum and populate dwarfLocOp
// // Return Address register. This is stored in `0(%rsp, "")` and is not a physical register.
// RA = (16, "RA"),

View File

@ -318,6 +318,81 @@ pub fn addCases(ctx: *TestContext) !void {
, &[_][]const u8{":2:15: error: incompatible types: 'bool' and 'comptime_int'"});
}
{
var case = ctx.exe("multiplying numbers at runtime and comptime", linux_x64);
case.addCompareOutput(
\\export fn _start() noreturn {
\\ mul(3, 4);
\\
\\ exit();
\\}
\\
\\fn mul(a: u32, b: u32) void {
\\ if (a * b != 12) unreachable;
\\}
\\
\\fn exit() noreturn {
\\ asm volatile ("syscall"
\\ :
\\ : [number] "{rax}" (231),
\\ [arg1] "{rdi}" (0)
\\ : "rcx", "r11", "memory"
\\ );
\\ unreachable;
\\}
,
"",
);
// comptime function call
case.addCompareOutput(
\\export fn _start() noreturn {
\\ exit();
\\}
\\
\\fn mul(a: u32, b: u32) u32 {
\\ return a * b;
\\}
\\
\\const x = mul(3, 4);
\\
\\fn exit() noreturn {
\\ asm volatile ("syscall"
\\ :
\\ : [number] "{rax}" (231),
\\ [arg1] "{rdi}" (x - 12)
\\ : "rcx", "r11", "memory"
\\ );
\\ unreachable;
\\}
,
"",
);
// Inline function call
case.addCompareOutput(
\\export fn _start() noreturn {
\\ var x: usize = 5;
\\ const y = mul(2, 3, x);
\\ exit(y - 30);
\\}
\\
\\fn mul(a: usize, b: usize, c: usize) callconv(.Inline) usize {
\\ return a * b * c;
\\}
\\
\\fn exit(code: usize) noreturn {
\\ asm volatile ("syscall"
\\ :
\\ : [number] "{rax}" (231),
\\ [arg1] "{rdi}" (code)
\\ : "rcx", "r11", "memory"
\\ );
\\ unreachable;
\\}
,
"",
);
}
{
var case = ctx.exe("assert function", linux_x64);
case.addCompareOutput(
@ -700,7 +775,8 @@ pub fn addCases(ctx: *TestContext) !void {
// Spilling registers to the stack.
case.addCompareOutput(
\\export fn _start() noreturn {
\\ assert(add(3, 4) == 791);
\\ assert(add(3, 4) == 1221);
\\ assert(mul(3, 4) == 21609);
\\
\\ exit();
\\}
@ -716,19 +792,47 @@ pub fn addCases(ctx: *TestContext) !void {
\\ const i = g + h; // 100
\\ const j = i + d; // 110
\\ const k = i + j; // 210
\\ const l = k + c; // 217
\\ const m = l + d; // 227
\\ const n = m + e; // 241
\\ const o = n + f; // 265
\\ const p = o + g; // 303
\\ const q = p + h; // 365
\\ const r = q + i; // 465
\\ const s = r + j; // 575
\\ const t = s + k; // 785
\\ break :blk t;
\\ const l = j + k; // 320
\\ const m = l + c; // 327
\\ const n = m + d; // 337
\\ const o = n + e; // 351
\\ const p = o + f; // 375
\\ const q = p + g; // 413
\\ const r = q + h; // 475
\\ const s = r + i; // 575
\\ const t = s + j; // 685
\\ const u = t + k; // 895
\\ const v = u + l; // 1215
\\ break :blk v;
\\ };
\\ const y = x + a; // 788
\\ const z = y + a; // 791
\\ const y = x + a; // 1218
\\ const z = y + a; // 1221
\\ return z;
\\}
\\
\\fn mul(a: u32, b: u32) u32 {
\\ const x: u32 = blk: {
\\ const c = a * a * a * a; // 81
\\ const d = a * a * a * b; // 108
\\ const e = a * a * b * a; // 108
\\ const f = a * a * b * b; // 144
\\ const g = a * b * a * a; // 108
\\ const h = a * b * a * b; // 144
\\ const i = a * b * b * a; // 144
\\ const j = a * b * b * b; // 192
\\ const k = b * a * a * a; // 108
\\ const l = b * a * a * b; // 144
\\ const m = b * a * b * a; // 144
\\ const n = b * a * b * b; // 192
\\ const o = b * b * a * a; // 144
\\ const p = b * b * a * b; // 192
\\ const q = b * b * b * a; // 192
\\ const r = b * b * b * b; // 256
\\ const s = c + d + e + f + g + h + i + j + k + l + m + n + o + p + q + r; // 2401
\\ break :blk s;
\\ };
\\ const y = x * a; // 7203
\\ const z = y * a; // 21609
\\ return z;
\\}
\\