I've added more of the ".def" files from mingw. The list is based on all the libraries referenced by the win32metadata project. (see https://github.com/marlersoft/zigwin32).
In C, if a function has return type `int` and the return expression
is a boolean expression, there is no implicit cast. Therefore the
translated Zig code needs to call @boolToInt() on the result.
Written with feedback from @Vexu
Fixes#6215
Previously, this would reuse an operand even if reuseOperand returned
false for both operands.
genArmBinOpCode was also changed to be more Three-address code oriented
in the process.
Previously, the registers included r0, r1, r2, r3 which are not
included in the callee saved registers according to the Procedure Call
Standard for the ARM Architecture.
* thread/condition: fix PthreadCondition compilation
* thread/condition: add wait, signal and broadcast
This is like std.Thread.Mutex which forwards calls to `impl`; avoids
having to call `cond.impl` every time.
* thread/condition: initialize the implementation
After a right shift, top limbs may be all zero. However, without
normalization, the number of limbs is not going to change.
In order to check if a big number is zero, we used to assume that the
number of limbs is 1. Which may not be the case after right shifts,
even if the actual value is zero.
- Normalize after a right shift
- Add a test for that issue
- Check all the limbs in `eqlZero()`. It may not be necessary if
callers always remember to normalize before calling the function.
But checking all the limbs is very cheap and makes the function less
bug-prone.
The astgen for switch expressions did not respect the ZIR rules of only
referencing instructions that are in scope:
%14 = block_comptime_flat({
%15 = block_comptime_flat({
%16 = const(TypedValue{ .ty = comptime_int, .val = 1})
})
%17 = block_comptime_flat({
%18 = const(TypedValue{ .ty = comptime_int, .val = 2})
})
})
%19 = block({
%20 = ref(%5)
%21 = deref(%20)
%22 = switchbr(%20, [%15, %17], {
%15 => {
%23 = const(TypedValue{ .ty = comptime_int, .val = 1})
%24 = store(%10, %23)
%25 = const(TypedValue{ .ty = void, .val = {}})
%26 = break("label_19", %25)
},
%17 => {
%27 = const(TypedValue{ .ty = comptime_int, .val = 2})
%28 = store(%10, %27)
%29 = const(TypedValue{ .ty = void, .val = {}})
%30 = break("label_19", %29)
}
}, {
%31 = unreachable_safe()
}, special_prong=else)
})
In this snippet you can see that the comptime expr referenced %15 and
%17 which are not in scope. There also was no test coverage for runtime
switch expressions.
Switch expressions will have to be re-introduced to follow these rules
and with some test coverage. There is some usable code being deleted in
this commit; it will be useful to reference when re-implementing switch
later.
A few more improvements to do while we're at it:
* only use .ref result loc on switch target if any prongs obtain the
payload with |*syntax|
- this improvement should be done to if, while, and for as well.
- this will remove the needless ref/deref instructions above
* remove switchbr and add switch_block, which is both a block and a
switch branch.
- similarly we should remove loop and add loop_block.
This commit introduces a "force_comptime" flag into the GenZIR
scope. The main purpose of this will be to choose the "comptime"
variants of certain key zir instructions, such as function calls and
branches. We will be moving away from using the block_comptime_flat
ZIR instruction, and eventually deleting it.
This commit also contains miscellaneous fixes to this branch that bring
it to the state of passing all the tests.
on the break instruction operands. This involves a new TZIR instruction,
br_block_flat, which represents a break instruction where the operand is
the result of a flat block. See the doc comments on the instructions for
more details.
How it works: when adding break instructions in semantic analysis, the
underlying allocation is slightly padded so that it is the size of a
br_block_flat instruction, which allows the break instruction to later
be converted without removing instructions inside the parent body. The
extra type coercion instructions go into the body of the br_block_flat,
and backends are responsible for dispatching the instruction correctly
(it should map to the same function calls for related instructions).
Local variable declarations now detect whether the result location for the
initialization expression consumes the result location as a pointer. If
it does, then the local is emitted as a LocalPtr. Otherwise it is
emitted as a LocalVal.
This results in clean, straightforward ZIR code for semantic analysis.