To unify the wasm backend with the other backends, we will now call `generateSymbol` to
lower a Decl into bytes. This means we also have to change some function signatures
to comply with the linker interface.
Since the general purpose generateSymbol is less featureful than wasm's, some tests are
temporarily disabled.
* Sema: resolve type fully when emitting an alloc AIR instruction to
avoid tripping assertion for checking struct field alignment.
* LLVM backend: keep a reference to the LLVM target data alive during
lowering so that we can ask LLVM what it thinks the ABI alignment
and size of LLVM types are. We need this in order to lower tuples and
structs so that we can put in extra padding bytes when Zig disagrees
with LLVM about the size or alignment of something.
* LLVM backend: make the LLVM struct type packed that contains the most
aligned union field and the padding. This prevents the struct from
being too big according to LLVM. In the future, we may want to
consider instead emitting unions in a "flat" manner; putting the tag,
most aligned union field, and padding all in the same struct field
space.
* LLVM backend: make structs with 2 or fewer fields return isByRef=false.
This results in more efficient codegen. This required lowering of
bitcast to sometimes store the struct into an alloca, ptrcast, and
then load because LLVM does not allow bitcasting structs.
* enable more passing behavior tests.
* AstGen: remove the setBlockBodyEliding function. This is no longer
needed after 63788b2a511eb87974065a052e2436b0c6202544.
* Sema: store_to_block_ptr instruction is handled as
store_to_inferred_ptr or store, as necessary.
Instead of explicitly setting lhs to .none,
check if the lhs instruction was analyzed.
This simpler approach also handles stores from nested blocks correctly.
The mechanism behind initializing a union's tag is a bit complicated,
depending on whether the union is initialized at runtime,
forced comptime, or implicit comptime.
`coerce_result_ptr` now does not force a block to be a runtime context;
instead of adding runtime instructions directly, it forwards analysis to
the respective functions for initializing optionals and error unions.
`validateUnionInit` now has logic to still emit a runtime
`set_union_tag` instruction even if the union pointer is comptime-known,
for the case of a pointer that is not comptime mutable, such as a
variable or the result of `@intToPtr`.
`validateStructInit` looks for a completely different pattern now; it
now handles the possibility of the corresponding AIR instruction for
the `field_ptr` to be missing or the corresponding `store` to be missing.
See the new comment added to the function for more details. An
equivalent change should probably be made to `validateArrayInit`.
`analyzeOptionalPayloadPtr` and `analyzeErrUnionPayloadPtr` functions now
emit a `optional_payload_ptr_set` or `errunion_payload_ptr_set`
instruction respectively if `initializing` is true and the pointer value
is not comptime-mutable.
`storePtr2` now tries the comptime pointer store before checking if the
element type has one possible value because the comptime pointer store
can have side effects of setting a union tag, setting an optional payload
non-null, or setting an error union to be non-error.
The LLVM backend `lowerParentPtr` function is improved to take into
account the differences in how the LLVM values are lowered depending on
the Zig type. It now handles unions correctly as well as additionally
handling optionals and error unions.
In the LLVM backend, the instructions `optional_payload_ptr_set` and
`errunion_payload_ptr_set` check liveness analysis and only do the side
effects in the case the result of the instruction is unused.
A few wasm and C backend test cases regressed, but they are due to TODOs
in lowering of constants, so this is progress.
This moves the single bugs behavior tests to the outer branch and disables the test cases
for all non-passing backends.
For the larger files, we move it up a single branch and disable it for the c backend.
All test cases that do pass for the c backend however, are enabled.
* pass more x64 behavior tests
* return with a TODO error when lowering a decl with no runtime bits
* insert some debug logs for tracing recursive descent down the
type-value tree when lowering types
* print `Decl`'s name when print debugging `decl_ref` value
Singular tests (such as in the bug ones) are moved to top level with exclusions for non-passing backends.
The big behavior tests such as array_llvm and slice are moved to the inner scope with the C backend disabled.
They all pass for the wasm backend now
This makes all union test cases succeed.
`rem` was also implemented as all we had to do is enable the instruction.
Loading and storing values based on ABI-size was simplified to a direct abiSize() call.
We also enabled all the newly passing test cases and disable them for all non-passing backends.
All of those test cases were verified to see if they perhaps already pass for the c-backend.
This commit updates stage2 to enforce the property that the syntax
`fn()void` is a function *body* not a *pointer*. To get a pointer, the
syntax `*const fn()void` is required.
ZIR puts function alignment into the func instruction rather than the
decl because this way it makes it into function types. LLVM backend
respects function alignments.
Struct and Union have methods `fieldSrcLoc` to help look up source
locations of their fields. These trigger full loading, tokenization, and
parsing of source files, so should only be called once it is confirmed
that an error message needs to be printed.
There are some nice new error hints for explaining why a type is
required to be comptime, particularly for structs that contain function
body types.
`Type.requiresComptime` is now moved into Sema because it can fail and
might need to trigger field type resolution. Comptime pointer loading
takes into account types that do not have a well-defined memory layout
and does not try to compute a byte offset for them.
`fn()void` syntax no longer secretly makes a pointer. You get a function
body type, which requires comptime. However a pointer to a function body
can be runtime known (obviously).
Compile errors that report "expected pointer, found ..." are factored
out into convenience functions `checkPtrOperand` and `checkPtrType` and
have a note about function pointers.
Implemented `Value.hash` for functions, enum literals, and undefined values.
stage1 is not updated to this (yet?), so some workarounds and disabled
tests are needed to keep everything working. Should we update stage1 to
these new type semantics? Yes probably because I don't want to add too
much conditional compilation logic in the std lib for the different
backends.
Instead use the standarized option for communicating the
zig compiler backend at comptime, which is `zig_backend`. This was
introduced in commit 1c24ef0d0b09a12a1fe98056f2fc04de78a82df3.
The main problem was that the loop body was treated as an expression
that was one of the peer result values of a loop, when in reality the
loop body is noreturn and only the `break` operands are the result
values of loops.
This was solved by introducing an override that prevents rvalue() from
emitting a store to result location instruction for loop bodies.
An orthogonal change also included in this commit is switching
`elem_val` index expressions to using `coerced_ty` and doing the
coercion to `usize` inside `Sema`, resulting in smaller ZIR (since the
cast becomes implied).
I also changed the break operand expression to use `reachableExpr`,
introducing a new compile error for double break.
This makes a few more behavior tests pass for `while` and `for` loops.
Previously, this function would return an incorrect result for structs
and unions which did not have their fields resolved yet.
This required introducing more logic in Sema to resolve types before
doing certain things such as creating an anonmyous Decl and emitting
function call AIR.
As a result a couple more struct tests pass.
Oh, and I implemented the language change to make sizeOf for pointers
always return pointer size bytes even if the element type is 0 bits.
* Add AIR instructions: ret_ptr, ret_load
- This allows Sema to be blissfully unaware of the backend's decision
to implement by-val/by-ref semantics for struct/union/array types.
Backends can lower these simply as alloc, load, ret instructions,
or they can take advantage of them to use a result pointer.
* Add AIR instruction: array_elem_val
- Allows for better codegen for `Sema.elemVal`.
* Implement calculation of ABI alignment and ABI size for unions.
* Before appending the following AIR instructions to a block,
resolveTypeLayout is called on the type:
- call - return type
- ret - return type
- store_ptr - elem type
* Sema: fix memory leak in `zirArrayInit` and other cleanups to this
function.
* x86_64: implement the full x86_64 C ABI according to the spec
* Type: implement `intInfo` for error sets.
* Type: implement `intTagType` for tagged unions.
The Zig type tag `Fn` is now used exclusively for function bodies.
Function pointers are modeled as `*const T` where `T` is a `Fn` type.
* The `call` AIR instruction now allows a function pointer operand as
well as a function operand.
* Sema now has a coercion from function body to function pointer.
* Function type syntax, e.g. `fn()void`, now returns zig tag type of
Pointer with child Fn, rather than Fn directly.
- I think this should probably be reverted. Will discuss the lang
specs before doing this. Idea being that function pointers would
need to be specified as `*const fn()void` rather than `fn() void`.
LLVM backend:
* Enable calling the panic handler (previously this just
emitted `@breakpoint()` since the backend could not handle the panic
function).
* Implement sret
* Introduce `isByRef` and implement it for structs and arrays. Types
that are `isByRef` are now passed as pointers to functions, and e.g.
`elem_val` will return a pointer instead of doing a load.
* Move the function type creating code from `resolveLlvmFunction` to
`llvmType` where it belongs; now there is only 1 instance of this
logic instead of two.
* Add the `nonnull` attribute to non-optional pointer parameters.
* Fix `resolveGlobalDecl` not using fully-qualified names and not using
the `decl_map`.
* Implement `genTypedValue` for pointer-like optionals.
* Fix memory leak when lowering `block` instruction and OOM occurs.
* Implement volatile checks where relevant.
Amends b009aca38a861f74fd5378db19c65db286ad397e.
The PR predated the introduction of unused variable/constant checks,
thus the build checks weren't reporting this failure until later when
merged into master.