This required adjusting `Type.nameAlloc` to be used with a
general-purpose allocator and added `Type.nameAllocArena` for the arena
use case (avoids allocation sometimes).
Previously, we did this so that we could insert a debug variable
declaration intrinsic on the alloca. But there is a dbg.value intrinsic
for declaring variables that are values.
The comment notes that we can't because of constness, but the recent
work by @Vexu lets us use the bitcast ty cause constness comes later.
The following tests pass from this:
```
test "A" {
const ary = [_:0]u8{42};
const ptr: [*:0]const u8 = &ary;
try expect(ptr[1] == 0);
}
test "B" {
comptime {
const ary = [_:0]u8{42};
const ptr: [*:0]const u8 = &ary;
try expect(ptr[1] == 0);
}
}
```
By the time zirElemVal is reached for a many pointer, a load has already
happened, making sure the operand is already dereferenced.
This makes `mem.sliceTo` now work.
This uses a new ZIR inst `array_init_sent` (and a ref equivalent) to
represent array init expressions that terminate in a a sentinel value.
The sentienl value is the last value in the `MultiOp` payload. This
makes it a bit more awkward to deal with (lots of "len - 1") but makes
it so that the payload matches the fact that sentinels appear at the end
of arrays. However, this is not a hill I want to die on so if we want to
change it to index 0, I'm happy to do so.
This makes the following work properly:
try expect(@TypeOf([_:0]u8{}) == [0:0]u8);
Array types with sentinels were not being typed correctly in the
translation from ZIR to Sema (comptime). This modifies the `array_init`
ZIR to also retain the type of the init expression (note: untyped array
initialization is done via the `array_init_anon` ZIR and so is unchanged
in this commit).
* mul_add AIR instruction: use `pl_op` instead of `ty_pl`. The type is
always the same as the operand; no need to waste bytes redundantly
storing the type.
* AstGen: use coerced_ty for all the operands except for one which we
use to communicate the type.
* Sema: use the correct source location for requireRuntimeBlock in
handling of `@mulAdd`.
* native backends: handle liveness even for the functions that are
TODO.
* C backend: implement `@mulAdd`. It lowers to libc calls.
* LLVM backend: make `@mulAdd` handle all float types.
- improved fptrunc and fpext to handle f80 with compiler-rt calls.
* Value.mulAdd: handle all float types and use the `@mulAdd` builtin.
* behavior tests: revert the changes to testing `@mulAdd`. These
changes broke the test coverage, making it only tested at
compile-time.
Improved f80 support:
* std.math.fma handles f80
* move fma functions from freestanding libc to compiler-rt
- add __fmax and fmal
- make __fmax and fmaq only exported when they don't alias fmal.
- make their linkage weak just like the rest of compiler-rt symbols.
* removed `longDoubleIsF128` and replaced it with `longDoubleIs` which
takes a type as a parameter. The implementation is now more accurate
and handles more targets. Similarly, in stage2 the function
CTypes.sizeInBits is more accurate for long double for more targets.
This fixes 2 entrypoints within the self-hosted wasm linker that would be called
for the llvm backend, whereas we should simply call into the llvm backend to perform such action.
i.e. not allocate a decl index when we have an llvm object, and when flushing a module,
we should be calling it on llvm's object, rather than have the wasm linker perform the operation.
Also, this fixes the wasm intrinsics for wasm.memory.size and wasm.memory.grow.
Lastly, this commit ensures that when an extern function is being resolved, we tell LLVM how
to import such function.
Like decl code generation, also unify the wasm backend and the wasm linker to call into
the general purpose `codegen.zig` to generate the code for a function.