* zir.Code: introduce a decls array. This is so that `decl_val` and
`decl_ref` instructions can refer to a Decl with a u32 and therefore
they can also store a source location. This is needed for proper
compile error reporting.
* astgen uses a hash map to avoid redundantly adding a Decl to the
decls array.
* fixed reporting "instruction illegal outside function body" instead
of the desired message "unable to resolve comptime value".
* astgen skips emitting dbg_stmt instructions in comptime scopes.
* astgen has some logic to avoid adding unnecessary type coercion
instructions for common values.
Introduce "inline" variants of ZIR tags:
* block => block_inline
* repeat => repeat_inline
* break => break_inline
* condbr => condbr_inline
The inline variants perform control flow at compile-time, and they
utilize the return value of `Sema.analyzeBody`.
`analyzeBody` now returns an Index, not a Ref, which is the ZIR index of
a break instruction. This effectively communicates both the intended
break target block as well as the operand, allowing parent blocks to
find out whether they, in turn, should return the break instruction up the
call stack, or accept the operand as the block's result and continue
analyzing instructions in the block.
Additionally:
* removed the deprecated ZIR tag `block_comptime`.
* removed `break_void_node` so that all break instructions use the same Data.
* zir.Code: remove the `root_start` and `root_len` fields. There is now
implied to be a block at index 0 for the root body. This is so that
`break_inline` has something to point at and we no longer need the
special instruction `break_flat`.
* implement source location byteOffset() for .node_offset_if_cond
.node_offset_for_cond is probably redundant and can be deleted.
We don't have `comptime var` supported yet, so this commit adds a test
that at least makes sure the condition is required to be comptime known
for `inline while`.
* comment out the failing stage2 test cases
(so that we can uncomment the ones that are newly passing with
further commits)
* Sema: implement negate, negatewrap
* astgen: implement field access, multiline string literals, and
character literals
* Module: when resolving an AST node into a byte offset, use the
main_tokens array, not the firstToken function
* translate-c: Use [N:0] arrays when initializer is a string literal
Translate incomplete arrays as [N:0] when initialized by a string literal.
This preserves a bit more of the type information from the original C program.
Fixes#8215
Fixes#2820
After reading the source code, the first two bytes are inspected, and
if they correspond to a UTF-16 BOM in little-endian order, the source
code is converted to UTF-8.
Given a pointer operand `ptr` and a signed integer operand `idx`
`ptr + idx` and `idx + ptr` -> ptr + @bitCast(usize, @intCast(isize, idx))
`ptr - idx` -> ptr - @bitCast(usize, @intCast(isize, idx))
Thanks @LemonBoy for pointing out that we can take advantage of wraparound
to dramatically simplify the code.
* Now it supports being an lvalue (see additional lines in the test
case).
* Properly handles a pointer result location (see additional lines in
the test case that assign the result of the orelse to a variable
rather than a const).
* Properly sets the result location type when possible, so that type
inference of an `orelse` operand expression knows its result type.
We can now codegen optionals! This includes the following instructions:
- is_null
- is_null_ptr
- is_non_null
- is_non_null_ptr
- optional_payload
- optional_payload_ptr
- br_void
Also includes a test for optionals.
Add support for OffsetOfExpr that contain exactly 1 component, when that component
is a field.
For example, given:
```c
struct S {
float f;
double d;
};
struct T {
long l;
int i;
struct S s[10];
};
```
Then:
```c
offsetof(struct T, i) // supported
offsetof(struct T, s[2].d) // not supported currently
```