Basically everything that has a direct replacement or no uses left.
Notable omissions:
- std.ArrayHashMap: Too much fallout, needs a separate cleanup.
- std.debug.runtime_safety: Too much fallout.
- std.heap.GeneralPurposeAllocator: Lots of references to it remain, not
a simple find and replace as "debug allocator" is not equivalent to
"general purpose allocator".
- std.io.Reader: Is being reworked at the moment.
- std.unicode.utf8Decode(): No replacement, needs a new API first.
- Manifest backwards compat options: Removal would break test data used
by TestFetchBuilder.
- panic handler needs to be a namespace: Many tests still rely on it
being a function, needs a separate cleanup.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
preparing to rearrange std.io namespace into an interface
how to upgrade:
std.io.getStdIn() -> std.fs.File.stdin()
std.io.getStdOut() -> std.fs.File.stdout()
std.io.getStdErr() -> std.fs.File.stderr()
std.crypto: add constant-time codecs
Add constant-time hex/base64 codecs designed to process cryptographic
secrets, adapted from libsodium's implementations.
Introduce a `crypto.codecs` namespace for crypto-related encoders and
decoders. Move ASN.1 codecs to this namespace.
This will also naturally accommodate the proposed PEM codecs.
The Bernstein-Yang inversion code was meant to be used only with the
fields we currently use for the NIST curves.
But people copied that code and were confused that it didn't work as
expected with other field sizes.
It doesn't cost anything to make it work with other field sizes,
that may support in the future. So let's do it.
This also reduces the diff with the example zig code in fiat crypto.
Suggested by @Rexicon226 -- Thank you!
Instead of hardcoding a call to defaultRandomSeed() use the customizable
std.options.cryptoRandomSeed() like in the rest of the function.
Closes#19943.
When runtime safety is turned on, `Ed25519.fromSecretKey()` can
currently hit an assertion if the format of the secret key is
invalid.
Return an error instead, so that applications can recover.
readAtLeast is greedy and will read the entire length of the buffer if it can. However, reading past the end of the cert in this case is useless, so reading the full length of the buffer just puts an increasingly large (due to the growth algorithm of ArrayList) collection of wasted bytes after each cert in cb.bytes.
In practical terms, this ends up saving potentially millions of bytes of wasted reads/allocations. In my testing, after reading the keychain files on my machine, cb.bytes ends up with these capacities:
- Before: cb.bytes.capacity = 32720747
- After: cb.bytes.capacity = 251937
That's a decrease of 99.2%
Additionally, swaps to readNoEof since it should be an error to hit EOF without reading the full cert size.
* std.crypto: add the ability to explicitly tag a value as secret
It turns out that Valgrind can be a very useful tool to check that secrets
are not leaked via side channels involving lookups or conditional jumps.
Valgrind tracks uninitialized data, and memcheck reports operations
involving uninitialized values. By permanently or temporarily telling
Valgrind that a memory region containing secrets is uninitialized, we can
detect common side-channel vulnerabilities.
For example, the following code snippets would immediately report that the
result is not computed in constant time:
```zig
classify(&key);
const len = std.mem.indexOfScalar(u8, &key, 0);
```
```zig
classify(&key);
const idx = key[0];
x += idx;
```
```zig
var x: [4]u8 = undefined;
std.crypto.random.bytes(&x);
classify(&x);
if (std.mem.eql(u8, "test", &x)) return;
```
This is not fool-proof, but it can help a lot to detect unwanted compiler
optimizations.
Also, right now, this is relying on Valgrind primitives, but these
annotations can be used to do more interesting things later, especially with
our own code generation backends.
* Update for Zig 0.14
* Remove checks for Valgrind enablement
* bcrypt: make silently_truncate_password a member of Params
This removes the need for having both `bcrypt()` and
`bcryptWithTruncation()` in the public API.
And whether truncation happens or not becomes even more explicit.
* Update crypto benchmark
In the original PR that implemented this (https://github.com/ziglang/zig/pull/14325), it included a list of references for the keychain format. Multiple of those references include the checks that are added in this commit, and empirically this fixes the loading of a real keychain file that was previously failing (it had both a record with offset 0 and a record with cert_size 0).
Fixes#22870
In the MAC finalization function, concatenated tags at odd positions
were not absorbed into the correct lane.
Spotted by a Tigerbeetle regression test and reported by Rafael Batiati
(@batiati) — Thanks!
* fix merge conflicts
* rename the declarations
* reword documentation
* extract FixedBufferAllocator to separate file
* take advantage of locals
* remove the assertion about max alignment in Allocator API, leaving it
Allocator implementation defined
* fix non-inline function call in start logic
The GeneralPurposeAllocator implementation is totally broken because it
uses global state but I didn't address that in this commit.
heap.zig: define new default page sizes
heap.zig: add min/max_page_size and their options
lib/std/c: add miscellaneous declarations
heap.zig: add pageSize() and its options
switch to new page sizes, especially in GPA/stdlib
mem.zig: remove page_size
The spec is ambiguous, and it's too late to change it.
So the most reasonable thing to do in order to avoid generating
strings that could be parsed differently by other implementations
is to forbid parameters named "v" at compile-time.
See https://github.com/P-H-C/phc-string-format/issues/8
This was done by regex substitution with `sed`. I then manually went
over the entire diff and fixed any incorrect changes.
This diff also changes a lot of `callconv(.C)` to `callconv(.c)`, since
my regex happened to also trigger here. I opted to leave these changes
in, since they *are* a correct migration, even if they're not the one I
was trying to do!