Previously it was a tagged union which was one of:
* baseline
* a specific CPU
* a set of features
Now, it's possible to have a CPU but also modify the CPU's feature set
on top of that. This is closer to what LLVM does.
This is more correct because Zig's notion of CPUs (and LLVM's) is not
exact CPU models. For example "skylake" is not one very specific model;
there are several different pieces of hardware that match "skylake" that
have different feature sets enabled.
comment from this commit reproduced here:
I have observed the CPU name reported by LLVM being incorrect. On
the SourceHut build services, LLVM 9.0 reports the CPU as "athlon-xp",
which is a 32-bit CPU, even though the system is 64-bit and the reported
CPU features include, among other things, +64bit.
So the strategy taken here is that we observe both reported CPU, and the
reported CPU features. The features are trusted more; but if the features
match exactly the features of the reported CPU, then we trust the reported CPU.
Previously, buffers were used with toOwnedSlice() to create c strings
for LLVM cpu/feature strings. However, toOwnedSlice() shrinks the
string memory to the buffer's length, which cuts off the null terminator.
Now toSliceConst() is used instead, and the buffer is not deinited
so that the string memory is not freed.
* Implements #3768. This is a sweeping breaking change that requires
many (trivial) edits to Zig source code. Array values no longer
coerced to slices; however one may use `&` to obtain a reference to
an array value, which may then be coerced to a slice.
* Adds `IrInstruction::dump`, for debugging purposes. It's useful to
call to inspect the instruction when debugging Zig IR.
* Fixes bugs with result location semantics. See the new behavior test
cases, and compile error test cases.
* Fixes bugs with `@typeInfo` not properly resolving const values.
* Behavior tests are passing but std lib tests are not yet. There
is more work to do before merging this branch.
this also deletes C string literals from the language, and then makes
the std lib changes and compiler changes necessary to get the behavior
tests and std lib tests passing again.
Thanks to the Windows Process Environment Block, it is possible to
obtain handles to the standard input, output, and error streams without
possibility of failure.
* delete the std/event/net directory
* `std.event.Loop.waitUntilFdReadable` and related functions
no longer have possibility of failure. On Linux, they fall
back to poll() and then fall back to sleep().
* add some missing `noasync` decorations in `std.event.Loop`
* redo the `std.net.Server` API. it's quite nice now, but
shutdown does not work cleanly. There is a race condition with
close() that I am actively working on.
* move `std.io.OutStream` to its own file to match `std.io.InStream`.
I started working on making `write` integrated with evented I/O,
but it got tricky so I backed off and filed #3557. However
I did integrate `std.os.writev` and `std.os.pwritev` with evented I/O.
* add `std.Target.stack_align`
* move networking tests to `lib/std/net/test.zig`
* add `std.net.tcpConnectToHost` and `std.net.tcpConnectToAddress`.
* rename `error.UnknownName` to `error.UnknownHostName` within the
context of DNS resolution.
* add `std.os.readv`, which is integrated with evented I/O.
* `std.os.preadv`, is now integrated with evented I/O.
* `std.os.accept4` now asserts that ENOTSOCK and EOPNOTSUPP never
occur (misuse of API), instead of returning errors.
* `std.os.connect` is now integrated with evented I/O.
`std.os.connect_async` is gone. Just use `std.os.connect`.
* fix false positive dependency loop regarding async function frames
* add more compile notes to help when dependency loops occur
in determining whether a function is async.
* ir: change an assert to ir_assert to make it easier to find
workarounds for when such an assert is triggered. In this case
it was trying to parse an IPv4 address at comptime.