We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.
Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
std/crypto: use finer-grained error sets in function signatures
Returning the `crypto.Error` error set for all crypto operations
was very convenient to ensure that errors were used consistently,
and to avoid having multiple error names for the same thing.
The flipside is that callers were forced to always handle all
possible errors, even those that could never be returned by a
function.
This PR makes all functions return union sets of the actual errors
they can return.
The error sets themselves are all limited to a single error.
Larger sets are useful for platform-specific APIs, but we don't have
any of these in `std/crypto`, and I couldn't find any meaningful way
to build larger sets.
See https://eprint.iacr.org/2019/1492.pdf for justification.
8 rounds ChaCha20 provides a 2.5x speedup, and is still believed
to be safe.
Round-reduced versions are actually deployed (ex: Android filesystem
encryption), and thanks to the magic of comptime, it doesn't take much
to support them.
This also makes the ChaCha20 code more consistent with the Salsa20 code,
removing internal functions that were not part of the public API any more.
No breaking changes; the public API remains backwards compatible.
Let's follow the road paved by the removal of 'z'/'Z', the Formatter
pattern is nice enough to let us remove the remaining four special cases
and declare u8 slices free from any special casing!
- use `PascalCase` for all types. So, AES256GCM is now Aes256Gcm.
- consistently use `_length` instead of mixing `_size` and `_length` for the
constants we expose
- Use `minimum_key_length` when it represents an actual minimum length.
Otherwise, use `key_length`.
- Require output buffers (for ciphertexts, macs, hashes) to be of the right
size, not at least of that size in some functions, and the exact size elsewhere.
- Use a `_bits` suffix instead of `_length` when a size is represented as a
number of bits to avoid confusion.
- Functions returning a constant-sized slice are now defined as a slice instead
of a pointer + a runtime assertion. This is the case for most hash functions.
- Use `camelCase` for all functions instead of `snake_case`.
No functional changes, but these are breaking API changes.
Brings a 30% speed boost on x86_64 even though we still process only
one block at a time for now.
Only enabled on x86_64 since the non-vectorized implementation seems
to currently perform better on some architectures (at least on aarch64).
But the non-vectorized implementation still gets a little speed boost
as well (~17%) with these changes.
- 1MiB objects on the stack doesn't play well with wasmtime.
Reduce these to 512KiB so that the webassembly benchmarks can run.
- Pass expected results to a blackBox() function. Without this, in
release-fast mode, the compiler could detected unused return values,
and would produce results that didn't make sense for siphash.
- Add AEAD constructions to the benchmarks.
- Inline chacha20Core() makes it 4 times faster.
- benchmarkSignatures() -> benchmarkSignature() for consistency.
Instead of having all primitives and constructions share the same namespace,
they are now organized by category and function family.
Types within the same category are expected to share the exact same API.
* Factor redundant code in std/crypto/chacha20
* Add support for XChaCha20, and the XChaCha20-Poly1305 construction.
XChaCha20 is a 24-byte version of ChaCha20, is widely implemented
and is on the standards track:
https://tools.ietf.org/html/draft-irtf-cfrg-xchacha-03
* Add support for encryption/decryption with the authentication tag
detached from the ciphertext
* Add wrappers with an API similar to the Gimli AEAD type, so that
we can use and benchmark AEADs with a common API.
* `std.mem.Compare` is now `std.math.Order` and the enum tags
renamed to follow new style convention.
* `std.mem.compare` is renamed to `std.mem.order`.
* new function `std.math.order`
* Implements #3768. This is a sweeping breaking change that requires
many (trivial) edits to Zig source code. Array values no longer
coerced to slices; however one may use `&` to obtain a reference to
an array value, which may then be coerced to a slice.
* Adds `IrInstruction::dump`, for debugging purposes. It's useful to
call to inspect the instruction when debugging Zig IR.
* Fixes bugs with result location semantics. See the new behavior test
cases, and compile error test cases.
* Fixes bugs with `@typeInfo` not properly resolving const values.
* Behavior tests are passing but std lib tests are not yet. There
is more work to do before merging this branch.