This function can be used to initialize a big integer to either the upper
or lower limit of a 2s-complement integer. Note that the result is still
in sign-magnitude representation, though in order to convert it into twos
complement all one has to do is take the absolute value.
lladd is now implemented in terms of lladdcarry, which returns the carry limb.
Similarly, llsub is implemented using llsubcarry, which returns the borrow limb.
* Remove the builtins `@addWithSaturation`, `@subWithSaturation`,
`@mulWithSaturation`, and `@shlWithSaturation` now that we have
first-class syntax for saturating arithmetic.
* langref: Clarify the behavior of `@shlExact`.
* Ast: rename `bit_shift_left` to `shl` and `bit_shift_right` to `shr`
for consistency.
* Air: rename to include underscore separator with consistency with
the rest of the ops.
* Air: add shl_exact instruction
* Use non-extended tags for saturating arithmetic, to keep it
simple so that all the arithmetic operations can be done the same
way.
- Sema: unify analyzeArithmetic with analyzeSatArithmetic
- implement comptime `+|`, `-|`, and `*|`
- allow float operands to saturating arithmetic
* `<<|` allows any integer type for the RHS.
* C backend: fix rebase conflicts
* LLVM backend: reduce the amount of branching for arithmetic ops
* zig.h: fix magic number not matching actual size of C integer types
- adds initial support for the operators +|, -|, *|, <<|, +|=, -|=, *|=, <<|=
- uses operators in addition to builtins in behavior test
- adds binOpExt() and assignBinOpExt() to AstGen.zig. these need to be audited
On certain systems (Solaris), resolving the scope id from an interface
name can only be done on AF_INET-domain sockets. While we're here,
simplify the test while we're here, since there's only one address.
Also note that the loopback interface name is not stable across OSs.
BSDs and Solaris use `lo0` whilst Linux uses `l0`.
Extracts lib/std/special/c_stage1.zig from lib/std/special/c.zig.
When the self-hosted compiler is further along, all the logic from c_stage1.zig will
be migrated back c.zig and then c_stage1.zig will be deleted. Until then we have a
simpler implementation of c.zig that only uses features already implemented in self-hosted.
So far it only contains memcpy and memset, with slightly different
(arguably more correct!) implementations that are compatible with
self-hosted.
Additionally, this commit improves the LLVM backend:
* use the more efficient and convenient fnInfo() when lowering function
type info.
* fix incremental compilation not deleting all basic blocks of a
function.
* hook up calling conventions
* hook up the following function attributes:
- noredzone, nounwind, uwtable, minsize, optsize, sanitize_thread
* prepare compiler-rt to support being compiled by stage2
- put in a few minor workarounds that will be removed later, such as
using `builtin.stage2_arch` rather than `builtin.cpu.arch`.
- only try to export a few symbols for now - we'll move more symbols
over to the "working in stage2" section as they become functional
and gain test coverage.
- use `inline fn` at function declarations rather than `@call` with an
always_inline modifier at the callsites, to avoid depending on the
anonymous array literal syntax language feature (for now).
* AIR: replace floatcast instruction with fptrunc and fpext for
shortening and widening floating point values, respectively.
* Introduce a new ZIR instruction, `export_value`, which implements
`@export` for the case when the thing to be exported is a local
comptime value that points to a function.
- AstGen: fix `@export` not properly reporting ambiguous decl
references.
* Sema: handle ExportOptions linkage. The value is now available to all
backends.
- Implement setting global linkage as appropriate in the LLVM
backend. I did not yet inspect the LLVM IR, so this still needs to
be audited. There is already a pending task to make sure the alias
stuff is working as intended, and this is related.
- Sema almost handles section, just a tiny bit more code is needed in
`resolveExportOptions`.
* Sema: implement float widening and shortening for both `@floatCast`
and float coercion.
- Implement the LLVM backend code for this as well.
Currently -Dcpu is completely ignored if -Dtarget isn't passed as well.
Further, -Dcpu=baseline is ignored even if -Dtarget=native is passed.
This patch fixes these 2 issues, always respecting the -Dcpu option if
present.
There were two things to resolve here:
* Snektron's branch edited Zir printing, but in master branch
I moved the printing code from Zir.zig to print_zir.zig. So that
just had to be moved over.
* In master branch I fleshed out coerceInMemory a bit more, which
caused one of Snektron's test cases to fail, so I had to add
addrspace awareness to that. Once I did that the tests passed again.