big ints: unify add/sub with their wrapping variants

This commit is contained in:
Robin Voetter 2021-09-29 00:11:42 +02:00
parent a36ef84deb
commit dc1f698545

View File

@ -300,6 +300,40 @@ pub const Mutable = struct {
return add(r, a, operand);
}
/// Base implementation for addition. Adds `max(a.limbs.len, b.limbs.len)` elements from a and b,
/// and returns whether any overflow occured.
/// r, a and b may be aliases.
///
/// Asserts r has enough elements to hold the result. The upper bound is `max(a.limbs.len, b.limbs.len)`.
fn addCarry(r: *Mutable, a: Const, b: Const) bool {
if (a.eqZero()) {
r.copy(b);
return false;
} else if (b.eqZero()) {
r.copy(a);
return false;
} else if (a.positive != b.positive) {
if (a.positive) {
// (a) + (-b) => a - b
return r.subCarry(a, b.abs());
} else {
// (-a) + (b) => b - a
return r.subCarry(b, a.abs());
}
} else {
r.positive = a.positive;
if (a.limbs.len >= b.limbs.len) {
const c = lladdcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
return c != 0;
} else {
const c = lladdcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
return c != 0;
}
}
}
/// r = a + b
///
/// r, a and b may be aliases.
@ -307,42 +341,14 @@ pub const Mutable = struct {
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`.
pub fn add(r: *Mutable, a: Const, b: Const) void {
if (a.eqZero()) {
r.copy(b);
return;
} else if (b.eqZero()) {
r.copy(a);
return;
}
if (a.limbs.len == 1 and b.limbs.len == 1 and a.positive == b.positive) {
var o: Limb = undefined;
if (!@addWithOverflow(Limb, a.limbs[0], b.limbs[0], &o)) {
r.limbs[0] = o;
r.len = 1;
r.positive = a.positive;
return;
}
}
if (a.positive != b.positive) {
if (a.positive) {
// (a) + (-b) => a - b
r.sub(a, b.abs());
} else {
// (-a) + (b) => b - a
r.sub(b, a.abs());
}
} else {
if (a.limbs.len >= b.limbs.len) {
lladd(r.limbs[0..], a.limbs, b.limbs);
r.normalize(a.limbs.len + 1);
} else {
lladd(r.limbs[0..], b.limbs, a.limbs);
r.normalize(b.limbs.len + 1);
}
r.positive = a.positive;
if (r.addCarry(a, b)) {
// Fix up the result. Note that addCarry normalizes by a.limbs.len or b.limbs.len,
// so we need to set the length here.
const msl = math.max(a.limbs.len, b.limbs.len);
// `[add|sub]Carry` normalizes by `msl`, so we need to fix up the result manually here.
// Note, the fact that it normalized means that the intermediary limbs are zero here.
r.len = msl + 1;
r.limbs[msl] = 1; // If this panics, there wasn't enough space in `r`.
}
}
@ -354,39 +360,84 @@ pub const Mutable = struct {
pub fn addWrap(r: *Mutable, a: Const, b: Const, signedness: std.builtin.Signedness, bit_count: usize) void {
const req_limbs = calcTwosCompLimbCount(bit_count);
// We can ignore the upper bits here, those results will be discarded anyway.
const a_limbs = a.limbs[0..math.min(req_limbs, a.limbs.len)];
const b_limbs = b.limbs[0..math.min(req_limbs, b.limbs.len)];
// Slice of the upper bits if they exist, these will be ignored and allows us to use addCarry to determine
// if an overflow occured.
const x = Const{
.positive = a.positive,
.limbs = a.limbs[0..math.min(req_limbs, a.limbs.len)],
};
if (a.eqZero()) {
r.copy(b);
} else if (b.eqZero()) {
r.copy(a);
} else if (a.positive != b.positive) {
if (a.positive) {
// (a) + (-b) => a - b
r.subWrap(a, b.abs(), signedness, bit_count);
} else {
// (-a) + (b) => b - a
r.subWrap(b, a.abs(), signedness, bit_count);
}
// Don't need to truncate, subWrap does that for us.
return;
} else {
if (a_limbs.len >= b_limbs.len) {
_ = lladdcarry(r.limbs, a_limbs, b_limbs);
r.normalize(a_limbs.len);
} else {
_ = lladdcarry(r.limbs, b_limbs, b_limbs);
r.normalize(b_limbs.len);
}
const y = Const{
.positive = b.positive,
.limbs = b.limbs[0..math.min(req_limbs, b.limbs.len)],
};
r.positive = a.positive;
if (r.addCarry(x, y)) {
// There are two possibilities here:
// - We overflowed req_limbs. In this case, the carry is ignored.
// - a and b had less elements than req_limbs, and those were overflowed. This case needs to be handled.
const msl = math.max(a.limbs.len, b.limbs.len);
if (msl < req_limbs) {
r.limbs[msl] = 1;
r.len = req_limbs;
}
}
r.truncate(r.toConst(), signedness, bit_count);
}
/// Base implementation for subtraction. Subtracts `max(a.limbs.len, b.limbs.len)` elements from a and b,
/// and returns whether any overflow occured.
/// r, a and b may be aliases.
///
/// Asserts r has enough elements to hold the result. The upper bound is `max(a.limbs.len, b.limbs.len)`.
fn subCarry(r: *Mutable, a: Const, b: Const) bool {
if (a.eqZero()) {
r.copy(b);
r.positive = !b.positive;
return false;
} else if (b.eqZero()) {
r.copy(a);
return false;
} if (a.positive != b.positive) {
if (a.positive) {
// (a) - (-b) => a + b
return r.addCarry(a, b.abs());
} else {
// (-a) - (b) => -a + -b
return r.addCarry(a, b.negate());
}
} else if (a.positive) {
if (a.order(b) != .lt) {
// (a) - (b) => a - b
const c = llsubcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
r.positive = true;
return c != 0;
} else {
// (a) - (b) => -b + a => -(b - a)
const c = llsubcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
r.positive = false;
return c != 0;
}
} else {
if (a.order(b) == .lt) {
// (-a) - (-b) => -(a - b)
const c = llsubcarry(r.limbs, a.limbs, b.limbs);
r.normalize(a.limbs.len);
r.positive = false;
return c != 0;
} else {
// (-a) - (-b) => --b + -a => b - a
const c = llsubcarry(r.limbs, b.limbs, a.limbs);
r.normalize(b.limbs.len);
r.positive = true;
return c != 0;
}
}
}
/// r = a - b
///
/// r, a and b may be aliases.
@ -394,39 +445,14 @@ pub const Mutable = struct {
/// Asserts the result fits in `r`. An upper bound on the number of limbs needed by
/// r is `math.max(a.limbs.len, b.limbs.len) + 1`. The +1 is not needed if both operands are positive.
pub fn sub(r: *Mutable, a: Const, b: Const) void {
if (a.positive != b.positive) {
if (a.positive) {
// (a) - (-b) => a + b
r.add(a, b.abs());
} else {
// (-a) - (b) => -(a + b)
r.add(a.abs(), b);
r.positive = false;
}
} else {
if (a.positive) {
// (a) - (b) => a - b
if (a.order(b) != .lt) {
llsub(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
r.positive = true;
} else {
llsub(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
r.positive = false;
}
} else {
// (-a) - (-b) => -(a - b)
if (a.order(b) == .lt) {
llsub(r.limbs[0..], a.limbs[0..a.limbs.len], b.limbs[0..b.limbs.len]);
r.normalize(a.limbs.len);
r.positive = false;
} else {
llsub(r.limbs[0..], b.limbs[0..b.limbs.len], a.limbs[0..a.limbs.len]);
r.normalize(b.limbs.len);
r.positive = true;
}
}
if (r.subCarry(a, b)) {
// Fix up the result. Note that addCarry normalizes by a.limbs.len or b.limbs.len,
// so we need to set the length here.
const msl = math.max(a.limbs.len, b.limbs.len);
// `addCarry` normalizes by `msl`, so we need to fix up the result manually here.
// Note, the fact that it normalized means that the intermediary limbs are zero here.
r.len = msl + 1;
r.limbs[msl] = 1; // If this panics, there wasn't enough space in `r`.
}
}
@ -438,45 +464,26 @@ pub const Mutable = struct {
pub fn subWrap(r: *Mutable, a: Const, b: Const, signedness: std.builtin.Signedness, bit_count: usize) void {
const req_limbs = calcTwosCompLimbCount(bit_count);
// We can ignore the upper bits here, those results will be discarded anyway.
// We also don't need to mind order here. Again, overflow is ignored here.
const a_limbs = a.limbs[0..math.min(req_limbs, a.limbs.len)];
const b_limbs = b.limbs[0..math.min(req_limbs, b.limbs.len)];
// Slice of the upper bits if they exist, these will be ignored and allows us to use addCarry to determine
// if an overflow occured.
const x = Const{
.positive = a.positive,
.limbs = a.limbs[0..math.min(req_limbs, a.limbs.len)],
};
if (a.positive != b.positive) {
if (a.positive) {
// (a) - (-b) => a + b
r.addWrap(a, b.abs(), signedness, bit_count);
} else {
// (-a) - (b) => -a + -b
// Note, we don't do -(a + b) here to avoid a second truncate.
r.addWrap(a, b.negate(), signedness, bit_count);
}
// Don't need to truncate, addWrap does that for us.
return;
} else if (a.positive) {
if (a_limbs.len >= b_limbs.len) {
// (a) - (b) => a - b
_ = llsubcarry(r.limbs, a_limbs, b_limbs);
r.normalize(a_limbs.len);
r.positive = true;
} else {
// (a) - (b) => -b + a => -(b - a)
_ = llsubcarry(r.limbs, b_limbs, a_limbs);
r.normalize(b_limbs.len);
r.positive = false;
}
} else {
if (a_limbs.len >= b_limbs.len) {
// (-a) - (-b) => -(a - b)
_ = llsubcarry(r.limbs, a_limbs, b_limbs);
r.normalize(a_limbs.len);
r.positive = false;
} else {
// (-a) - (-b) => --b + -a => b - a
_ = llsubcarry(r.limbs, b_limbs, a_limbs);
r.normalize(b_limbs.len);
r.positive = true;
const y = Const{
.positive = b.positive,
.limbs = b.limbs[0..math.min(req_limbs, b.limbs.len)],
};
if (r.subCarry(x, y)) {
// There are two possibilities here:
// - We overflowed req_limbs. In this case, the carry is ignored.
// - a and b had less elements than req_limbs, and those were overflowed. This case needs to be handled.
const msl = math.max(a.limbs.len, b.limbs.len);
if (msl < req_limbs) {
r.limbs[msl] = 1;
r.len = req_limbs;
}
}