This commit replaces the "fuzzer" UI, previously accessed with the
`--fuzz` and `--port` flags, with a more interesting web UI which allows
more interactions with the Zig build system. Most notably, it allows
accessing the data emitted by a new "time report" system, which allows
users to see which parts of Zig programs take the longest to compile.
The option to expose the web UI is `--webui`. By default, it will listen
on `[::1]` on a random port, but any IPv6 or IPv4 address can be
specified with e.g. `--webui=[::1]:8000` or `--webui=127.0.0.1:8000`.
The options `--fuzz` and `--time-report` both imply `--webui` if not
given. Currently, `--webui` is incompatible with `--watch`; specifying
both will cause `zig build` to exit with a fatal error.
When the web UI is enabled, the build runner spawns the web server as
soon as the configure phase completes. The frontend code consists of one
HTML file, one JavaScript file, two CSS files, and a few Zig source
files which are built into a WASM blob on-demand -- this is all very
similar to the old fuzzer UI. Also inherited from the fuzzer UI is that
the build system communicates with web clients over a WebSocket
connection.
When the build finishes, if `--webui` was passed (i.e. if the web server
is running), the build runner does not terminate; it continues running
to serve web requests, allowing interactive control of the build system.
In the web interface is an overall "status" indicating whether a build
is currently running, and also a list of all steps in this build. There
are visual indicators (colors and spinners) for in-progress, succeeded,
and failed steps. There is a "Rebuild" button which will cause the build
system to reset the state of every step (note that this does not affect
caching) and evaluate the step graph again.
If `--time-report` is passed to `zig build`, a new section of the
interface becomes visible, which associates every build step with a
"time report". For most steps, this is just a simple "time taken" value.
However, for `Compile` steps, the compiler communicates with the build
system to provide it with much more interesting information: time taken
for various pipeline phases, with a per-declaration and per-file
breakdown, sorted by slowest declarations/files first. This feature is
still in its early stages: the data can be a little tricky to
understand, and there is no way to, for instance, sort by different
properties, or filter to certain files. However, it has already given us
some interesting statistics, and can be useful for spotting, for
instance, particularly complex and slow compile-time logic.
Additionally, if a compilation uses LLVM, its time report includes the
"LLVM pass timing" information, which was previously accessible with the
(now removed) `-ftime-report` compiler flag.
To make time reports more useful, ZIR and compilation caches are ignored
by the Zig compiler when they are enabled -- in other words, `Compile`
steps *always* run, even if their result should be cached. This means
that the flag can be used to analyze a project's compile time without
having to repeatedly clear cache directory, for instance. However, when
using `-fincremental`, updates other than the first will only show you
the statistics for what changed on that particular update. Notably, this
gives us a fairly nice way to see exactly which declarations were
re-analyzed by an incremental update.
If `--fuzz` is passed to `zig build`, another section of the web
interface becomes visible, this time exposing the fuzzer. This is quite
similar to the fuzzer UI this commit replaces, with only a few cosmetic
tweaks. The interface is closer than before to supporting multiple fuzz
steps at a time (in line with the overall strategy for this build UI,
the goal will be for all of the fuzz steps to be accessible in the same
interface), but still doesn't actually support it. The fuzzer UI looks
quite different under the hood: as a result, various bugs are fixed,
although other bugs remain. For instance, viewing the source code of any
file other than the root of the main module is completely broken (as on
master) due to some bogus file-to-module assignment logic in the fuzzer
UI.
Implementation notes:
* The `lib/build-web/` directory holds the client side of the web UI.
* The general server logic is in `std.Build.WebServer`.
* Fuzzing-specific logic is in `std.Build.Fuzz`.
* `std.Build.abi` is the new home of `std.Build.Fuzz.abi`, since it now
relates to the build system web UI in general.
* The build runner now has an **actual** general-purpose allocator,
because thanks to `--watch` and `--webui`, the process can be
arbitrarily long-lived. The gpa is `std.heap.DebugAllocator`, but the
arena remains backed by `std.heap.page_allocator` for efficiency. I
fixed several crashes caused by conflation of `gpa` and `arena` in the
build runner and `std.Build`, but there may still be some I have
missed.
* The I/O logic in `std.Build.WebServer` is pretty gnarly; there are a
*lot* of threads involved. I anticipate this situation improving
significantly once the `std.Io` interface (with concurrency support)
is introduced.
when a Run step that captures stderr fails, no output from it is visible
by the user and, since the step failed, any downstream step that would
process the captured stream will not run, making it impossible for the
user to see the stderr output from the failed process invocation, which
makes for a frustrating puzzle when this happens in CI.
This silences the excessive default stderr logging from Wine. The user can still
override this by setting WINEDEBUG in the environment; this just provides a more
sensible default.
Closes#24139.
added adapter to AnyWriter and GenericWriter to help bridge the gap
between old and new API
make std.testing.expectFmt work at compile-time
std.fmt no longer has a dependency on std.unicode. Formatted printing
was never properly unicode-aware. Now it no longer pretends to be.
Breakage/deprecations:
* std.fs.File.reader -> std.fs.File.deprecatedReader
* std.fs.File.writer -> std.fs.File.deprecatedWriter
* std.io.GenericReader -> std.io.Reader
* std.io.GenericWriter -> std.io.Writer
* std.io.AnyReader -> std.io.Reader
* std.io.AnyWriter -> std.io.Writer
* std.fmt.format -> std.fmt.deprecatedFormat
* std.fmt.fmtSliceEscapeLower -> std.ascii.hexEscape
* std.fmt.fmtSliceEscapeUpper -> std.ascii.hexEscape
* std.fmt.fmtSliceHexLower -> {x}
* std.fmt.fmtSliceHexUpper -> {X}
* std.fmt.fmtIntSizeDec -> {B}
* std.fmt.fmtIntSizeBin -> {Bi}
* std.fmt.fmtDuration -> {D}
* std.fmt.fmtDurationSigned -> {D}
* {} -> {f} when there is a format method
* format method signature
- anytype -> *std.io.Writer
- inferred error set -> error{WriteFailed}
- options -> (deleted)
* std.fmt.Formatted
- now takes context type explicitly
- no fmt string
This is necessary in two cases:
* On POSIX, the exe path (`argv[0]`) must contain a path separator
* Some programs might treat a file named e.g. `-foo` as a flag, which
can be avoided by passing `./-foo`
Rather than detecting these two cases, just always include the prefix;
there's no harm in it.
Also, if the cwd is specified, include it in the manifest. If the user
has set the cwd of a Run step, it is clearly because this affects the
behavior of the executable somehow, so that cwd path should be a part of
the step's manifest.
Resolves: #24216
Because any `LazyPath` might be resolved to a relative path, it's
incorrect to pass that directly to a child process whose cwd might
differ. Instead, if the child has an overriden cwd, we need to convert
such paths to be relative to the child cwd using `std.fs.path.relative`.
For directory arguments that need both prefix and suffix strings
appended.
Needed to unbreak ffmpeg package after fe855691f6f742a14678cb617422977c2a55be39
Right now, if you override the build root with `--build-root`, then
`Run` steps can fail to execute because of incorrect path handling in
the compiler: `std.process.Child` gets a cwd-relative path, but also has
its cwd set to the build root. The latter behavior is really weird; it
doesn't match my expectations, nor does it match how we spawn child
`zig` processes. So, this commit makes the child process inherit the
build runner's cwd, as `LazyPath.getPath2` *expects* it to.
After investigating, this behavior dates all the way back to 2017; it
was introduced in 4543413. So, there isn't any clear/documented reason
for this; it should be safe to revert, since under the modern `LazyPath`
system it is strictly a bug AFAICT.
This change fixes false-positive cache hits for run steps that get run
with different sets of environment variables due the the environment map
being excluded from the cache hash.
`std.Build.Step.Run` makes the very reasonable assumption that
`error.InvalidExe` will be reported on `spawn` if it will happen.
However, this property does not currently hold on POSIX targets. This
is, through a slightly convoluted series of events, partially
responsible for the sporadic `BrokenPipe` errors we've been seeing more
and more in CI runs.
Making `spawn` wait for the child to exec in the POSIX path introduces
a block of up to 400us. So, instead of doing that, we add a new API for
this particular case: `waitForSpawn`. This function is a nop on Windows,
but on POSIX it blocks until the child successfully (or otherwise) calls
`execvpe`, and reports the error if necessary. `std.Build.Step.Run`
calls this function, so that it can get `error.InvalidExe` when it wants
it.
I'm not convinced that this API is optimal. However, I think this entire
API needs to be either heavily refactored or straight-up redesigned
(related: #22504), so I'm not too worried about hitting the perfect API:
I'd rather just fix this bug for now, and figure out the long-term goal
a bit later.
At the expense of a slight special case in the build runner, we can make
the handling of dependencies between modules a little shorter and much
easier to follow.
When module and step graphs are being constructed during the "configure"
phase, we do not set up step dependencies triggered by modules. Instead,
after the configure phase, the build runner traverses the whole
step/module graph, starting from the root top-level steps, and
configures all step dependencies implied by modules. The "make" phase
then proceeds as normal. Also, the old `Module.dependencyIterator` logic
is replaced by two separate iterables. `Module.getGraph` takes the root
module of a compilation, and returns all modules in its graph; while
`Step.Compile.getCompileDependencies` takes a `*Step.Compile` and
returns all `*Step.Compile` it depends on, recursively, possibly
excluding dynamic libraries. The old `Module.dependencyIterator`
combined these two functions into one unintuitive iterator; they are now
separated, which in particular helps readability at the usage sites
which only need one or the other.
This commit changes the `root_module` field of `std.Build.Step.Compile`
to be a `*Module` rather than a `Module`. This is a breaking change, but
an incredibly minor one (the full potential extent of the breakage can
be seen in the modified standalone test).
This change will be necessary for an upcoming improvement, so it was
convenient to make it here.
We have deduced that it seems the sporadic BrokenPipe failures happening
on the CI runners (e.g.
https://github.com/ziglang/zig/actions/runs/12035916948/job/33555963190)
are likely caused by the test runner's stdin pipe abnormally closing,
likely due to the process crashing. Here, we introduce error handling
for this case, so that if these writes fail, the step is marked as
failed correctly, and we still collect the child's stderr to report.
This won't fix the CI issues, but it should promote them to proper error
messages including child stderr, which -- at least in theory -- should
allow us to ultimately track down where the errors come from.
Note that this change is desirable regardless of bugs in the test runner
or similar, since the child process could terminate abnormally for any
number of reasons (e.g. a crashing test), and such cases should be
correctly reported by the build runner.
When using Build.Step.Run.captureStdOut with a program that prints more
than 10 megabytes of output, the build process hangs.
This is because evalGeneric returns an error without reading child's
stdin till the end, so we subsequently get stuck in `try child.wait()`.
To fix this, make sure to kill the child in case of an error!
Output before this change:
λ ./zig/zig build -Dmultiversion=0.15.6 -Dconfig-release=0.15.7 -Dconfig-release-client-min=0.15.6
[3/8] steps
└─ run gh
^C
λ # an hour of debugging
Output after this change:
λ ./zig/zig build -Dmultiversion=0.15.6 -Dconfig-release=0.15.7 -Dconfig-release-client-min=0.15.6
install
└─ install generated to ../tigerbeetle
└─ run build_mutliversion (tigerbeetle)
└─ run unzip
└─ run gh failure
error: unable to spawn gh: StdoutStreamTooLong
Build Summary: 3/8 steps succeeded; 1 failed (disable with --summary none)
install transitive failure
└─ install generated to ../tigerbeetle transitive failure
└─ run build_mutliversion (tigerbeetle) transitive failure
└─ run unzip transitive failure
└─ run gh failure
error: the following build command failed with exit code 1:
/home/matklad/p/tb/work/.zig-cache/o/c0e3f5e66ff441cd16f9a1a7e1401494/build /home/matklad/p/tb/work/zig/zig /home/matklad/p/tb/work /home/matklad/p/tb/work/.zig-cache /home/matklad/.cache/zig --seed 0xc1d4efc8 -Zaecc61299ff08765 -Dmultiversion=0.15.6 -Dconfig-release=0.15.7 -Dconfig-release-client-min=0.15.6
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
A compilation build step for which the binary is not required could not
be compiled previously. There were 2 issues that caused this:
- The compiler communicated only the results of the emitted binary and
did not properly communicate the result if the binary was not emitted.
This is fixed by communicating the final hash of the artifact path (the
hash of the corresponding /o/<hash> directory) and communicating this
instead of the entire path. This changes the zig build --listen protocol
to communicate hashes instead of paths, and emit_bin_path is accordingly
renamed to emit_digest.
- There was an error related to the default llvm object path when
CacheUse.Whole was selected. I'm not really sure why this didn't manifest
when the binary is also emitted.
This was fixed by improving the path handling related to flush() and
emitLlvmObject().
In general, this commit also improves some of the path handling throughout
the compiler and standard library.
* libfuzzer: close file after mmap
* fuzzer/main.js: connect with EventSource and debug dump the messages.
currently this prints how many fuzzer runs have been attempted to
console.log.
* extract some `std.debug.Info` logic into `std.debug.Coverage`.
Prepares for consolidation across multiple different executables which
share source files, and makes it possible to send all the
PC/SourceLocation mapping data with 4 memcpy'd arrays.
* std.Build.Fuzz:
- spawn a thread to watch the message queue and signal event
subscribers.
- track coverage map data
- respond to /events URL with EventSource messages on a timer
* new .zig-cache subdirectory: 'v'
- stores coverage information with filename of hash of PCs that want
coverage. This hash is a hex encoding of the 64-bit coverage ID.
* build runner
* fixed bug in file system inputs when a compile step has an
overridden zig_lib_dir field set.
* set some std lib options optimized for the build runner
- no side channel mitigations
- no Transport Layer Security
- no crypto fork safety
* add a --port CLI arg for choosing the port the fuzzing web interface
listens on. it defaults to choosing a random open port.
* introduce a web server, and serve a basic single page application
- shares wasm code with autodocs
- assets are created live on request, for convenient development
experience. main.wasm is properly cached if nothing changes.
- sources.tar comes from file system inputs (introduced with the
`--watch` feature)
* receives coverage ID from test runner and sends it on a thread-safe
queue to the WebServer.
* test runner
- takes a zig cache directory argument now, for where to put coverage
information.
- sends coverage ID to parent process
* fuzzer
- puts its logs (in debug mode) in .zig-cache/tmp/libfuzzer.log
- computes coverage_id and makes it available with
`fuzzer_coverage_id` exported function.
- the memory-mapped coverage file is now namespaced by the coverage id
in hex encoding, in `.zig-cache/v`
* tokenizer
- add a fuzz test to check that several properties are upheld
The flag makes compiler_rt and libfuzzer be in debug mode.
Also:
* fuzzer: override debug logs and disable debug logs for frequently
called functions
* std.Build.Fuzz: fix bug of rerunning the old unit test binary
* report errors from rebuilding the unit tests better
* link.Elf: additionally add tsan lib and fuzzer lib to the hash
This flag makes the build runner rebuild unit tests after the pipeline
finishes, if it finds any unit tests.
I did not make this integrate with file system watching yet.
The test runner is updated to detect which tests are fuzz tests.
Run step is updated to track which test indexes are fuzz tests.
Changes the `make` function signature to take an options struct, which
additionally includes `watch: bool`. I intentionally am not exposing
this information to configure phase logic.
Also adds global zig cache to the compiler cache prefixes.
Closes#20600
The docs for setting stdio to "inherit" say:
It also means that this step will obtain a global lock to prevent other
steps from running in the meantime.
The implementation of this lock was missing but is now provided by this
commit.
closes#20119
Introduces `disable_zig_progress` which prevents the build runner from
assigning the child process a progress node.
This is needed for the empty_env test which requires the environment to
be completely empty.