The goal here is to support both levels of unwind tables (sync and async) in
zig cc and zig build. Previously, the LLVM backend always used async tables
while zig cc was partially influenced by whatever was Clang's default.
NetBSD has long since migrated to the EABI and doesn't officially support the
OABI anymore. The ABI selection logic in LLVM only actually picks OABI for
NetBSD as a last resort if the EABI isn't selected. That fallback is likely to
be removed in the future. So just remove this support in Zig entirely.
While here, I also removed some leftover 32-bit Arm and 32-bit x86 code for
Apple targets, which are long dead and unsupported by Zig.
- Rename GPU address spaces to match with SPIR-V spec.
- Emit `Block` Decoration for Uniform/PushConstant variables.
- Don't emit `OpTypeForwardPointer` for non-opencl targets.
(there's still a false-positive about recursive structs)
Signed-off-by: Ali Cheraghi <alichraghi@proton.me>
The old `CallingConvention` type is replaced with the new
`NewCallingConvention`. References to `NewCallingConvention` in the
compiler are updated accordingly. In addition, a few parts of the
standard library are updated to use the new type correctly.
This commit begins implementing accepted proposal #21209 by making
`std.builtin.CallingConvention` a tagged union.
The stage1 dance here is a little convoluted. This commit introduces the
new type as `NewCallingConvention`, keeping the old `CallingConvention`
around. The compiler uses `std.builtin.NewCallingConvention`
exclusively, but when fetching the type from `std` when running the
compiler (e.g. with `getBuiltinType`), the name `CallingConvention` is
used. This allows a prior build of Zig to be used to build this commit.
The next commit will update `zig1.wasm`, and then the compiler and
standard library can be updated to completely replace
`CallingConvention` with `NewCallingConvention`.
The second half of #21209 is to remove `@setAlignStack`, which will be
implemented in another commit after updating `zig1.wasm`.
* Adds new cpu architectures propeller1 and propeller2.
These cpu architectures allow targeting the Parallax Propeller 1 and Propeller 2, which are both very special microcontrollers with 512 registers and 8 cpu cores.
Resolves#21559
* Adds std.elf.EM.PROPELLER and std.elf.EM.PROPELLER2
* Fixes missing switch prongs in src/codegen/llvm.zig
* Fixes order in std.Target.Arch
---------
Co-authored-by: Felix "xq" Queißner <git@random-projects.net>
although they would also pass simply reverted to master branch because
I made the deprecated API still work for now (to be removed after 0.14.0
is tagged)
Introduces `std.builtin.Panic` which is a complete interface for
panicking. Provide `std.debug.FormattedPanic` and
`std.debug.SimplePanic` and let the user choose, or make their own.
The compiler actually doesn't need any functional changes for this: Sema
does reification based on the tag indices of `std.builtin.Type` already!
So, no zig1.wasm update is necessary.
This change is necessary to disallow name clashes between fields and
decls on a type, which is a prerequisite of #9938.
Implements the accepted proposal to introduce `@branchHint`. This
builtin is permitted as the first statement of a block if that block is
the direct body of any of the following:
* a function (*not* a `test`)
* either branch of an `if`
* the RHS of a `catch` or `orelse`
* a `switch` prong
* an `or` or `and` expression
It lowers to the ZIR instruction `extended(branch_hint(...))`. When Sema
encounters this instruction, it sets `sema.branch_hint` appropriately,
and `zirCondBr` etc are expected to reset this value as necessary. The
state is on `Sema` rather than `Block` to make it automatically
propagate up non-conditional blocks without special handling. If
`@panic` is reached, the branch hint is set to `.cold` if none was
already set; similarly, error branches get a hint of `.unlikely` if no
hint is explicitly provided. If a condition is comptime-known, `cold`
hints from the taken branch are allowed to propagate up, but other hints
are discarded. This is because a `likely`/`unlikely` hint just indicates
the direction this branch is likely to go, which is redundant
information when the branch is known at comptime; but `cold` hints
indicate that control flow is unlikely to ever reach this branch,
meaning if the branch is always taken from its parent, then the parent
is also unlikely to ever be reached.
This branch information is stored in AIR `cond_br` and `switch_br`. In
addition, `try` and `try_ptr` instructions have variants `try_cold` and
`try_ptr_cold` which indicate that the error case is cold (rather than
just unlikely); this is reachable through e.g. `errdefer unreachable` or
`errdefer @panic("")`.
A new API `unwrapSwitch` is introduced to `Air` to make it more
convenient to access `switch_br` instructions. In time, I plan to update
all AIR instructions to be accessed via an `unwrap` method which returns
a convenient tagged union a la `InternPool.indexToKey`.
The LLVM backend lowers branch hints for conditional branches and
switches as follows:
* If any branch is marked `unpredictable`, the instruction is marked
`!unpredictable`.
* Any branch which is marked as `cold` gets a
`llvm.assume(i1 true) [ "cold"() ]` call to mark the code path cold.
* If any branch is marked `likely` or `unlikely`, branch weight metadata
is attached with `!prof`. Likely branches get a weight of 2000, and
unlikely branches a weight of 1. In `switch` statements, un-annotated
branches get a weight of 1000 as a "middle ground" hint, since there
could be likely *and* unlikely *and* un-annotated branches.
For functions, a `cold` hint corresponds to the `cold` function
attribute, and other hints are currently ignored -- as far as I can tell
LLVM doesn't really have a way to lower them. (Ideally, we would want
the branch hint given in the function to propagate to call sites.)
The compiler and standard library do not yet use this new builtin.
Resolves: #21148
What is `sparcel`, you might ask? Good question!
If you take a peek in the SPARC v8 manual, §2.2, it is quite explicit that SPARC
v8 is a big-endian architecture. No little-endian or mixed-endian support to be
found here.
On the other hand, the SPARC v9 manual, in §3.2.1.2, states that it has support
for mixed-endian operation, with big-endian mode being the default.
Ok, so `sparcel` must just be referring to SPARC v9 running in little-endian
mode, surely?
Nope:
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L226)
* 40b4fd7a3e/llvm/lib/Target/Sparc/SparcTargetMachine.cpp (L104)
So, `sparcel` in LLVM is referring to some sort of fantastical little-endian
SPARC v8 architecture. I've scoured the internet and I can find absolutely no
evidence that such a thing exists or has ever existed. In fact, I can find no
evidence that a little-endian implementation of SPARC v9 ever existed, either.
Or any SPARC version, actually!
The support was added here: https://reviews.llvm.org/D8741
Notably, there is no mention whatsoever of what CPU this might be referring to,
and no justification given for the "but some are little" comment added in the
patch.
My best guess is that this might have been some private exercise in creating a
little-endian version of SPARC that never saw the light of day. Given that SPARC
v8 explicitly doesn't support little-endian operation (let alone little-endian
instruction encoding!), and no CPU is known to be implemented as such, I think
it's very reasonable for us to just remove this support.
In the case that the allocator is unavailable (OOM, etc.), we can
possibly still output the panic message - so now we stack allocate the
message and copy it to the exit data for passing to boot services.
this one is even harder to document then the last large overhaul.
TLDR;
- split apart Emit.zig into an Emit.zig and a Lower.zig
- created seperate files for the encoding, and now adding a new instruction
is as simple as just adding it to a couple of switch statements and providing the encoding.
- relocs are handled in a more sane maner, and we have a clear defining boundary between
lea_symbol and load_symbol now.
- a lot of different abstractions for things like the stack, memory, registers, and others.
- we're using x86_64's FrameIndex now, which simplifies a lot of the tougher design process.
- a lot more that I don't have the energy to document. at this point, just read the commit itself :p
this commit is a little too large to document fully, however the main gist of it this
- finish the `genInlineMemcpy` implement
- rename `setValue` to `genCopy` as I agree with jacob that it's a better name
- add in `genVarDbgInfo` for a better gdb experience
- follow the x86_64's method for genCall, as the procedure is very similar for us
- add `airSliceLen` as it's trivial
- change up the `airAddWithOverflow implementation a bit
- make sure to not spill of the elem_ty is 0 size
- correctly follow the RISC-V calling convention and spill the used calle saved registers in the prologue
and restore them in the epilogue
- add `address`, `deref`, and `offset` helper functions for MCValue. I must say I love these,
they make the code very readable and super verbose :)
- fix a `register_manager.zig` issue where when using the last register in the set, the value would overflow at comptime.
was happening because we were adding to `max_id` before subtracting from it.
this provides a much better indication of when we are having a controlled panic with an error message
or when we are actually segfaulting, as before the `trap` as causing a segfault.