This fixes a panic in `unionAbiSize` when a 0-length array of a union is used as a struct field.
Because `resolveTypeLayout` does not resolve the `elem_ty` if `arrayLenIncludingSentinel` returns
0 for the array, the child union type is not guaranteed to have a resolved layout at this point.
Fixed this case by just returning 0 here.
This commit introduces the new `ref_coerced_ty` result type into AstGen.
This represents a expression which we want to treat as an lvalue, and
the pointer will be coerced to a given type.
This change gives known result types to many expressions, in particular
struct and array initializations. This allows certain casts to work
which previously required explicitly specifying types via `@as`. It also
eliminates our dependence on anonymous struct types for expressions of
the form `&.{ ... }` - this paves the way for #16865, and also results
in less Sema magic happening for such initializations, also leading to
potentially better runtime code.
As part of these changes, this commit also implements #17194 by
disallowing RLS on explicitly-typed struct and array initializations.
Apologies for linking these changes - it seemed rather pointless to try
and separate them, since they both make big changes to struct and array
initializations in AstGen. The rationale for this change can be found in
the proposal - in essence, performing RLS whilst maintaining the
semantics of the intermediary type is a very difficult problem to solve.
This allowed the problematic `coerce_result_ptr` ZIR instruction to be
completely eliminated, which in turn also simplified the logic for
inferred allocations in Sema - thanks to this, we almost break even on
line count!
In doing this, the ZIR instructions surrounding these initializations
have been restructured - some have been added and removed, and others
renamed for clarity (and their semantics changed slightly). In order to
optimize ZIR tag count, the `struct_init_anon_ref` and
`array_init_anon_ref` instructions have been removed in favour of using
`ref` on a standard anonymous value initialization, since these
instructions are now virtually never used.
Lastly, it's worth noting that this commit introduces a slightly strange
source of generic poison types: in the expression `@as(*anyopaque, &x)`,
the sub-expression `x` has a generic poison result type, despite no
generic code being involved. This turns out to be a logical choice,
because we don't know the result type for `x`, and the generic poison
type represents precisely this case, providing the semantics we need.
Resolves: #16512Resolves: #17194
SPIR-V doesn't support true element indexing, so we probably
need to switch over to isByRef like in llvm for this to work
properly. Currently a temporary is used, which at least
seems to work.
When the tag is not known, it's set to `.none`. In this case, the value is either an
array of bytes (for extern unions) or an integer (for packed unions).
This was previously implemented by analyzing the AIR prior to the ZIR
`make_ptr_const` instruction. This solution was highly delicate, and in
particular broke down whenever there was a second `alloc` between the
`store` and `alloc` instructions, which is especially common in
destructure statements.
Sema now uses a different strategy to detect whether a `const` is
comptime-known. When the `alloc` is created, Sema begins tracking all
pointers and stores which refer to that allocation in temporary local
state. If any store is not comptime-known or has a higher runtime index
than the allocation, the allocation is marked as being runtime-known.
When we reach the `make_ptr_const` instruction, if the allocation is not
marked as runtime-known, it must be comptime-known. Sema will use the
set of `store` instructions to re-initialize the value in comptime
memory. We optimize for the common case of a single `store` instruction
by not creating a comptime alloc in this case, instead directly plucking
the result value from the instruction.
Resolves: #16083
This changeset fixes the handling of alignment in several places. The
new rules are:
* `@alignOf(T)` where `T` is a runtime zero-bit type is at least 1,
maybe greater.
* Zero-bit fields in `extern` structs *do* force alignment, potentially
offsetting following fields.
* Zero-bit fields *do* have addresses within structs which can be
observed and are consistent with `@offsetOf`.
These are not necessarily all implemented correctly yet (see disabled
test), but this commit fixes all regressions compared to master, and
makes one new test pass.
Currently, the compiler (like @typeName) writes it `fn(...) Type` but
zig fmt writes it `fn (...) Type` (notice the space after `fn`).
This inconsistency is now resolved and function types are consistently
written the zig fmt way. Before this there were more `fn (...) Type`
occurrences than `fn(...) Type` already.
Safety is not a global flag that should be enabled or disabled for all
stores - it's lowered by the frontend directly into AIR instruction
semantics. The flag for this is communicated via the `store` vs
`store_safe` AIR instructions, and whether to write 0xaa bytes or not
should be decided in `airStore` and passed down via function parameters.
This commit is a step backwards since it removes functionality but it
aims our feet towards a better mountain to climb.
AstGen emits an error when a closure over a known-runtime value crosses
a namespace boundary. This usually makes sense: however, this usage is
actually valid if the capture is within a `@TypeOf` operand. Sema
already has a special case to allow such closure within `@TypeOf` when
AstGen could not determine a value to be runtime-known. This commit
simply introduces analagous logic to AstGen to allow `var`s to cross
namespace boundaries within `@TypeOf`.
This is supposed to be the case, similar to how pointers to generic
functions are comptime-only (several pieces of logic already assumed
this). These types being considered runtime was causing `dbg_var_val`
AIR instructions to be wrongly emitted for such values, causing codegen
backends to create a runtime reference to the inline function, which (at
least on the LLVM backend) triggers an error.
Resolves: #38
This change implements the following syntax into the compiler:
```zig
const x: u32, var y, foo.bar = .{ 1, 2, 3 };
```
A destructure expression may only appear within a block (i.e. not at
comtainer scope). The LHS consists of a sequence of comma-separated var
decls and/or lvalue expressions. The RHS is a normal expression.
A new result location type, `destructure`, is used, which contains
result pointers for each component of the destructure. This means that
when the RHS is a more complicated expression, peer type resolution is
not used: each result value is individually destructured and written to
the result pointers. RLS is always used for destructure expressions,
meaning every `const` on the LHS of such an expression creates a true
stack allocation.
Aside from anonymous array literals, Sema is capable of destructuring
the following types:
* Tuples
* Arrays
* Vectors
A destructure may be prefixed with the `comptime` keyword, in which case
the entire destructure is evaluated at comptime: this means all `var`s
in the LHS are `comptime var`s, every lvalue expression is evaluated at
comptime, and the RHS is evaluated at comptime. If every LHS is a
`const`, this is not allowed: as with single declarations, the user
should instead mark the RHS as `comptime`.
There are a few subtleties in the grammar changes here. For one thing,
if every LHS is an lvalue expression (rather than a var decl), a
destructure is considered an expression. This makes, for instance,
`if (cond) x, y = .{ 1, 2 };` valid Zig code. A destructure is allowed
in almost every context where a standard assignment expression is
permitted. The exception is `switch` prongs, which cannot be
destructures as the comma is ambiguous with the end of the prong.
A follow-up commit will begin utilizing this syntax in the Zig compiler.
Resolves: #498
The `coerce_result_ptr` instruction is highly problematic and leads to
unintentional memory reinterpretation in some cases. It is more correct
to simply not forward result pointers through this builtin.
`coerce_result_ptr` is still used for struct and array initializations,
where it can still cause issues. Eliminating this usage will be a future
change.
Resolves: #16991
The following cast builtins did not previously work on vectors, and have
been made to:
* `@floatCast`
* `@ptrFromInt`
* `@intFromPtr`
* `@floatFromInt`
* `@intFromFloat`
* `@intFromBool`
Resolves: #16267
`TailQueue` was implemented as a doubly-linked list, but named after an
abstract data type. This was inconsistent with `SinglyLinkedList`, which
can be used to implement an abstract data type, but is still named after
the implementation. Renaming `TailQueue` to `DoublyLinkedList` improves
consistency between the two type names, and should help discoverability.
`TailQueue` is now a deprecated alias of `DoublyLinkedList`.
Related to issues #1629 and #8233.
There are a couple concepts here worth understanding:
Key.UnionType - This type is available *before* resolving the union's
fields. The enum tag type, number of fields, and field names, field
types, and field alignments are not available with this.
InternPool.UnionType - This one can be obtained from the above type with
`InternPool.loadUnionType` which asserts that the union's enum tag type
has been resolved. This one has all the information available.
Additionally:
* ZIR: Turn an unused bit into `any_aligned_fields` flag to help
semantic analysis know whether a union has explicit alignment on any
fields (usually not).
* Sema: delete `resolveTypeRequiresComptime` which had the same type
signature and near-duplicate logic to `typeRequiresComptime`.
- Make opaque types not report comptime-only (this was inconsistent
between the two implementations of this function).
* Implement accepted proposal #12556 which is a breaking change.
* Generalise NaN handling and make std.math.nan() give quiet NaNs
* Address uses of std.math.qnan_* and std.math.nan_* consts
* Comment out failing test due to issues with signalling NaN
* Fix issue in c_builtins.zig where we need qnan_u32
as explainded at https://llvm.org/docs/LangRef.html#vector-type :
"In general vector elements are laid out in memory in the same way as array types.
Such an analogy works fine as long as the vector elements are byte sized.
However, when the elements of the vector aren’t byte sized it gets a bit more complicated.
One way to describe the layout is by describing what happens when a vector such
as <N x iM> is bitcasted to an integer type with N*M bits, and then following the
rules for storing such an integer to memory."
"When <N*M> isn’t evenly divisible by the byte size the exact memory layout
is unspecified (just like it is for an integral type of the same size)."
AstGen provides all function call arguments with a result location,
referenced through the call instruction index. The idea is that this
should be the parameter type, but for `anytype` parameters, we use
generic poison, which is required to be handled correctly.
Previously, generic instantiations and inline calls worked by evaluating
all args in advance, before resolving generic parameter types. This
means any generic parameter (not just `anytype` ones) had generic poison
result types. This caused missing result locations in some cases.
Additionally, the generic instantiation logic caused `zirParam` to
analyze the argument types a second time before coercion. This meant
that for nominal types (struct/enum/etc), a *new* type was created,
distinct to the result type which was previously forwarded to the
argument expression.
This commit fixes both of these issues. Generic parameter type
resolution is now interleaved with argument analysis, so that we don't
have unnecessary generic poison types, and generic instantiation logic
now handles parameters itself rather than falling through to the
standard zirParam logic, so avoids duplicating the types.
Resolves: #16566Resolves: #16258Resolves: #16753