* Handle a `null` return from `llvmFieldIndex`.
* Add a behavior test to test this code path.
* Reword this test name, which incorrectly described how pointers to
zero-bit fields behave, and instead describe the actual test.
Given `main.go`:
package main
import _ "os/user"
func main() {}
Compiling it to linux/arm64:
$ CGO_CFLAGS='-O0' GOOS=linux GOARCH=arm64 CGO_ENABLED=1 CC="zig cc -target aarch64-linux-gnu.2.28" go build main.go
Results in this error:
runtime/cgo(.text): unknown symbol memset in callarm64
runtime/cgo(.text): unknown symbol memset in callarm64
runtime/cgo(.text): relocation target memset not defined
In the midst of intermediate compilations files we can see this commmand:
ld.lld -o _cgo_.o <...> /tmp/go-build206961058/b043/_x009.o <...> ~/.cache/zig/.../libcompiler_rt.a <...> ~/.cache/.../libc.so.6
`_x009.o` needs memset:
$ readelf -Ws ./b043/_x009.o | grep memset
22: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND memset
Both `libcompiler_rt.a` and `libc.so.6` provide it:
$ readelf -Ws ~/.cache/zig/.../libcompiler_rt.a | grep memset
870: 0000000000000000 318 FUNC WEAK DEFAULT 519 memset
$ readelf -Ws ~/.cache/zig/.../libc.so.6 | grep -w memset
476: 000000000001d34c 0 FUNC GLOBAL DEFAULT 7 memset@@GLIBC_2.2.5
Since `libcompiler_rt.a` comes before libc in the linker line, the
resulting `_cgo_.o` still links to a weak, unversioned memset:
$ readelf -Ws ./b043/_cgo_.o | grep -w memset
40: 000000000022c07c 160 FUNC WEAK DEFAULT 14 memset
719: 000000000022c07c 160 FUNC WEAK DEFAULT 14 memset
Since the final linking step is done by Golang's linker, it does not
know of `libcompiler_rt.a`, and fails to link with the error message
above. However, Go linker does recognize memset from glibc. If we
specify an `-lc` equivalent before the `libcompiler_rt.a`, it will link
to memset from libc:
$ readelf -Wa ./b043/_x009.o |grep memset
14: 0000000000000000 0 FUNC GLOBAL DEFAULT UND memset@GLIBC_2.17 (2)
157: 0000000000000000 0 FUNC GLOBAL DEFAULT UND memset@GLIBC_2.17
... and then `main.go` will compile+link successfully.
Why doesn't Go linker take memset from glibc? An educated guess: Go
determines whether to link with glibc from what the program asks (I
presume `.dynsym`). Since `memset` is no longer attributed to glibc, Go
skips linking to glibc altogether.
Bonus question: curious why `-O0` is necessary? Because when
optimizations are enabled (the default), the C compiler replaces
`memset` function call with plain `stp` instructions (on aarch64).
By pulling out the parallel hashing setup from `CodeSignature.zig`,
we can now reuse it different places across MachO linker (for now;
I can totally see its usefulness beyond MachO, eg. in COFF or ELF too).
The parallel hasher is generic over actual hasher such as Sha256 or MD5.
The implementation is kept as it was.
For UUID calculation, depending on the linking mode:
* incremental - since it only supports debug mode, we don't bother with MD5
hashing of the contents, and populate it with random data but only once
per a sequence of in-place binary patches
* traditional - in debug, we use random string (for speed); in release,
we calculate the hash, however we use LLVM/LLD's trick in that we
calculate a series of MD5 hashes in parallel and then one an MD5 of MD5
final hash to generate digest.
This fixes a regression introduced in #12298 where colors would never reset in a Windows console because the attributes would be queried on every `setColor` call, and then try to 'reset' the attributes to what it just queried (i.e. it was essentially doing a complicated no-op on .Reset).
This fixes the problem while (I think) keeping with the spirit of the changes in #12298--that is, `TTY.Config` is not specifically tied to stderr like it was before #12298. To that end, detectTTYConfig now takes a `File` and that's what gets used to query the initial attributes to reset to.
(for context, before #12298, the first `setColor` call is where the reset attributes would get queried and it would always use stderr to do it)
In glibc.zig, there were a few instances where the zig lib dir path name
incorrectly made its way into the cache namespace for various build
artifacts, resulting in unnecessary rebuilds of glibc.
Closes#13619
* revert changes to Module because the error set is consistent across
operating systems.
* remove duplicated Stat.fromSystem code and use a less redundant name.
* make fs.Dir.statFile follow symlinks, and avoid pointless control
flow through the posix layer.
This commit moves the logic from `std.build.InstallRawStep` into `zig
objcopy`. The options here are limited, but we can add features as
needed.
closes#9261
New issues can be opened for specific objcopy flag support.
This change adds to Liveness a simple pattern match for the
try-like `.condbr` blocks emitted by Sema's safety checks. This
allows us to determine that these do not modify memory, which
permits us to elide additional loads in the backend.
As @Vexu points out in the main issue, this is probably not a
complete solution on its own. We'll still want a way to reliably
narrow the load/copy when performing several consecutive accesses,
such as `foo.arr[x][y].z`
Resolves https://github.com/ziglang/zig/issues/12215